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2006

Tese orientada pelo Prof. Doutor Mário Jorge Costa Gaspar da Silva

e pelo Prof. Doutor Pedro Maldonado Coutinho





Abstract

Bioinformatics is a new research field that aims at using computer technol-

ogy to uncover biological knowledge of high relevance to the biotechnology

community. An important research topic in Bioinformatics involves the ex-

ploration of vast amounts of biological and biomedical scientific literature

(BioLiterature). Over the last few decades, text-mining systems have ex-

ploited this BioLiterature to reduce the time spent by researchers in its anal-

ysis. However, many of these systems rely on manually inserted domain

knowledge, which is time-consuming.

This thesis proposes an approach where domain knowledge is automati-

cally acquired from publicly available biological databases, instead of using

manually inserted domain knowledge. Based on this approach, innovative

methods for retrieval, extraction and validation of information published in

BioLiterature were developed and evaluated. The results show that the pro-

posed approach is an efficient alternative to domain knowledge explicitly

provided by experts. The new methods were also integrated into a sys-

tem for automatic annotation of genes and proteins, which was successfully

demonstrated in several applications.

Keywords: Bioinformatics, Text mining, Data mining, Gene and protein

automatic annotation.





Resumo

A Bioinformática é uma disciplina cient́ıfica recente, que recorre a meios

computacionais para revelar novo conhecimento de grande interesse para a

Biotecnologia. Um tópico de investigação importante da Bioinformática é a

exploração da vasta quantidade de literatura cient́ıfica existente sobre Bio-

logia e Biomedicina. Nas últimas décadas, têm sido propostos sistemas de

prospecção de texto para identificar informação relevante nestas bases de

informação por forma reduzir o tempo despendido a analisá-las. Contudo,

grande parte dos métodos de prospecção utilizados baseiam-se em conhe-

cimento espećıfico do domı́nio inserido manualmente, requerendo por isso

muito tempo para a sua criação.

Esta tese propõe uma abordagem que integra conhecimento adquirido

automaticamente a partir de bases de dados biológicos, em vez de usar co-

nhecimento espećıfico do domı́nio inserido manualmente. Esta abordagem

permitiu o desenvolvimento de métodos inovadores, cujos resultados de ava-

liação evidenciaram poder constituir uma alternativa eficiente às baseadas

em conhecimento de domı́nio introduzido por peritos. Os métodos foram

integrados num sistema para anotação automática de genes e protéınas, que

foi utilizado com sucesso em várias aplicações.

Palavras-chave: Bioinformática, Prospecção de texto, Prospecção de

dados, Anotação automática de genes e protéınas.





Resumo Alargado

A Biotecnologia tem como objectivo a produção e utilização aplicada de ma-

teriais de natureza biológica. A Bioinformática é por sua vez uma disciplina

cient́ıfica cujo principal objectivo é a produção de conhecimento de interesse

para a biotecnologia. Estuda técnicas inovadoras de manipulação, gestão e

análise de grandes quantidades de informação biológica, permitindo aos ci-

entistas extrair conhecimento a partir dessa informação. As fronteiras que

limitam a variedade das aplicações da Bioinformática são dif́ıceis de identi-

ficar, pois esta integra conhecimentos de diversas áreas da ciência, como a

Biologia, a Bioqúımica, a Biof́ısica, a Estat́ıstica, a Matemática e, natural-

mente, a Informática. O factor comum de todas as suas aplicações é o uso

de sistemas computacionais no tratamento de informação biológica para a

obtenção eficaz de importantes resultados cient́ıficos.

O grande interesse pela Bioinformática nos últimos anos deve-se sobre-

tudo à explosão da informação dispońıvel proveniente sobretudo dos esforços

de sequenciação parcial ou completa dos genomas de diferentes organismos.

Esta informação permitiu o estabelecimento de disciplinas da pós-genómica,

associadas ao estudo de processos biológicos relacionados com o genoma, o

que gerou ainda mais informação. Para a gerir têm sido criadas diversas bases

de dados de grande dimensão. Por exemplo, a base de dados EMBL1 arma-

1http://www.ebi.ac.uk/embl/

http://www.ebi.ac.uk/embl/


zena as sequências biológicas da maior parte dos genes conhecidos, indicando

quando posśıvel informação estrutural e funcional adicional. A estrutura

de um gene é representada por uma sequência de ácidos nucleot́ıdicos, que

podem ser de quatro tipos. Para os representar recorre-se a um alfabeto

genético, constitúıdo por quatro letras que correspondem às quatro alterna-

tivas posśıveis. A EMBL disponibilizava através da Internet em Dezembro

de 2005 cerca de 108 GB de informação representando os reśıduos de ácidos

nucleot́ıdicos de 64.619.747 sequências, observando-se um crescimento expo-

nencial desde a sua criação. Este valor não conta com a informação descritiva

de cada sequência, que é ainda de maior dimensão e de enorme importância.

A gestão destas bases de dados afigurou-se desde cedo como um processo

complexo. A ausência de recursos para caracterização dos dados armaze-

nados foi infelizmente acompanhada pela utilização de métodos simplistas

de anotação, causadores de muitas das incongruências encontradas presen-

temente. Em consequência, quando uma equipa de investigação precisa de

obter informação sobre uma determinada entidade biológica, procura pri-

meiro toda a informação existente nas bases de dados, e tenta depois, se esta

for relevante para o seu estudo, encontrar uma prova que suporte a veraci-

dade dessa mesma informação. Na maior parte dos casos a prova só pode ser

encontrada na literatura, o modo tradicional de divulgação do conhecimento

cient́ıfico. Na literatura a informação é expressa de uma forma não estrutu-

rada, o que dificulta o seu tratamento automático. Desta forma, muitas das

bases de dados são actualizadas directamente ou indirectamente por equipas

de peritos cuja função é procurar informação relevante em artigos cient́ıficos

para anotar os genes ou protéınas. Esta tarefa é bastante complexa devido à

grande quantidade e diversividade da informação a analisar. Isto requer um

esforço enorme às equipas de peritos, que por vezes geram anotações erradas



quando têm de analisar informação fora da sua especialidade. Para facilitar e

normalizar o processo de anotação têm sido desenvolvidas BioOntologias que

organizam e descrevem conceitos biológicos e as suas relações. Por exemplo,

GO2 (Gene Ontology) é uma BioOntologia que tem permitido uniformizar

as anotações entre diferentes espécies.

Mesmo usando um elevado número de recursos humanos é quase im-

posśıvel acompanhar o crescimento de informação gerada diariamente. Por

exemplo, em 2003, cerca de 560.000 citações foram adicionadas na base de

dados MEDLINE, um repositório de literatura relacionada com Biomedicina

e Biologia. Este repositório está dispońıvel através da PubMed3, que em

2005 continha mais de 15 milhões de citações. O PubMed é um dos recur-

sos mais utilizados na área de ciências da vida. Desta forma, a exploração

da imensa quantidade de literatura cient́ıfica sobre Biologia e Biomedicina

é uma questão de muito interesse para a comunidade cient́ıfica, que motiva

o desenvolvimento de ferramentas que possam extrair automaticamente in-

formação da literatura, ou que, pelo menos, permitam uma melhor orientação

no trabalho das equipas de investigação.

Nas últimas décadas, os sistemas de prospecção de texto têm sido aplica-

dos na identificação de informação relevante contida na literatura, reduzindo

desta forma o tempo despendido a analisá-la. Como a literatura cient́ıfica tem

vindo gradualmente a ser disponibilizada na Internet em formato electrónico,

o estudo de métodos de prospecção de literatura constituiu-se recentemente

como um tópico de investigação muito activo. Estes métodos têm por ob-

jectivo identificar e estruturar informação relevante expressa nos textos de

publicações cient́ıficas para posterior inserção em bases de dados. Estão em

curso um grande número de projectos que têm como objectivo o desenvol-

2http://www.geneontology.org/
3http://www.pubmed.org/

http://www.geneontology.org/
http://www.pubmed.org/


vimento de sistemas de extracção automática de informação da literatura

cient́ıfica para catalogação em bases de dados de informação biológica. O

primeiro sistema de extracção de informação da literatura biológica foi de-

senvolvido por Andrade et al. em 1998. A partir dáı tem sido desenvolvidos

vários sistemas, mas sempre com ńıveis de precisão abaixo do que seria de-

sejável. De forma a encontrar os métodos que mais se adequam a esta tarefa,

algumas competições internacionais têm sido realizadas:

• ACM KDD 2002 Cup challenge: bio-text task ;

• BioCreAtIvE 2004: Critical Assessment of Information Extraction sys-

tems in Biology ;

• TREC 2003 and 2004: genomics track.

A principal conclusão retirada destas competições foi que os métodos de

prospecção de texto utilizados com maior sucesso noutras áreas não obtêm

resultados satisfatórios quando aplicados à literatura biológica. Os obstáculos

mais dif́ıceis de transpor têm sido: o uso de diferentes nomenclaturas; a

heterogeneidade da informação; e existência de diferentes interpretações para

o mesmo texto. A prospecção de texto biológico contrasta com o que hoje

se alcança noutros domı́nios, como na identificação automática de entidades

mencionadas em textos retirados de jornais noticiosos, onde é já posśıvel

alcançar ńıveis de qualidade equivalentes aos de um perito humano. Contudo,

uma grande parte dos métodos de prospecção de literatura biológica baseiam-

se em conhecimento do domı́nio introduzido manualmente sob a forma de

regras e padrões que modelam todos os casos posśıveis e conjuntos de treino

demasiado espećıficos para serem estendidos a outros domı́nios. Este tipo

de abordagem tem custos muito elevados, pois exige um grande esforço dos



peritos na introdução de conhecimento do domı́nio do problema a resolver,

custos esses que muitas vezes não são compensados pelos resultados obtidos.

O trabalho descrito neste manuscrito propõe uma nova abordagem para

a prospecção de literatura biológica que evita o complexo problema do uso

de conhecimento de domı́nio inserido manualmente. Este trabalho advoga

em alternativa a integração de conhecimento de domı́nio adquirido automa-

ticamente a partir de bases de dados biológicos. Para validar a abordagem

proposta, foram desenvolvidos métodos para recolha, extracção e validação

de informação. Estes métodos foram também integrados no ProFAL (bioPro-

ducts Functional Annotation through Literature), um sistema desenvolvido

para anotação automática de genes e protéınas.

Para seleccionar documentos relevantes foi desenvolvido o WeBTC (Web

Biological Text Classification), um método inovador que permite a classi-

ficação de literatura de literatura relacionada com a Biomedicina e a Biolo-

gia. O WeBTC recorre a informação extráıda a partir de fontes dispońıveis

na Web com métodos estat́ısticos de classificação de texto tradicionais. O

WeBTC conseguiu aumentar significativamente a precisão (atingindo 100%)

dos métodos de classificação de texto tradicionais. Foi submetido ao ACM

KDD 2002 Cup challenge, onde mostrou ser uma alternativa eficaz para me-

lhorar os resultados obtidos pelos métodos de classificação de texto tradicio-

nais.

Para identificar anotações relevantes na literatura foi desenvolvido o FiGO

(Finding Genomic Ontology), um método não supervisionado para identi-

ficação de propriedades biológicas organizadas numa BioOntologia em texto

não estruturado através do conteúdo de informação de cada palavra. O FiGO

não necessita de conjuntos de treino, já que calcula o conteúdo de informação

de cada palavra a partir de uma BioOntologia que estrutura os termos. Desta



forma, a utilização do FiGO requer uma intervenção humana mı́nima. Ape-

sar de ter sido criado para reconhecer termos e não para extrair anotações,

FiGO obteve um bom desempenho no BioCreAtIvE quando comparado com

os métodos utilizados pelos outros participantes. O FiGO demonstrou ser

uma técnica eficiente de reconhecimento de termos na literatura, melhorando

o desempenho de sistemas automáticos de anotação.

Para validar as anotações identificadas foi desenvolvido o CAC (Correlate

the Annotations’ Components), um método para eliminar anotações incor-

rectamente identificadas por sistemas de anotação, com recurso a anotações

curadas de estrutura e função semelhantes. O CAC foi aplicado a um con-

junto de anotações extráıdas automaticamente da literatura. Os resultados

mostram que o CAC pode ser usado eficazmente para remover anotações

incorrectas geradas automaticamente. O CAC requer pouca ou nenhuma in-

tervenção humana, pois recolhe o conhecimento do domı́nio a partir de bases

de dados públicas.

O ProFAL está a ser usado para anotar enzimas activos sobre os glúcidos

(”carbohydrate-active”) com informação bibliográfica. Estes enzimas estão

classificadas na base de dados CAZy4 em várias famı́lias segundo a sua es-

trutura modular.

O ProFAL foi igualmente usado para anotar funcionalmente um conjunto

de genes relacionados com o desenvolvimento do pólen na Arabidopsis. Os

genes e as suas descrições funcionais estão armazenados na bases de dados

APEG5 (Arabidopsis Pollen Expressed Genes).

Em colaboração com investigadores do European Bioinformatics Institute

foi criada a ferramenta GOAnnotator6, que usa os termos automaticamente

4http://afmb.cnrs-mrs.fr/CAZY/
5http://xldb.fc.ul.pt/rebil/tools/apeg/
6http://xldb.fc.ul.pt/rebil/tools/goa/

http://afmb.cnrs-mrs.fr/CAZY/
http://xldb.fc.ul.pt/rebil/tools/apeg/
http://xldb.fc.ul.pt/rebil/tools/goa/


extráıdos da literatura pelo ProFAL para facilitar a verificação automática

de anotações não curadas de protéınas da bases de dados UniProt.

O sucesso da aplicação do ProFAL a estas três bases de dados para explo-

rar e identificar informação relevante na literatura, demonstra a sua eficácia

na anotação de genes e protéınas. Os resultados obtidos pelo ProFAL e pelos

métodos desenvolvidos evidenciam que a abordagem proposta é uma alter-

nativa eficiente para o conhecimento de domı́nio introduzido explicitamente

por peritos.
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1
Introduction

The large amounts of data produced by Molecular Biology projects spawned

computational methods that analyse these data to discover novel insights into

how living systems work. This field, known as Bioinformatics, is concerned

with understanding living systems by exploring biological information using

computer technology (Baldi and Brunak, 2001). In the beginning, Bioinfor-

matics tools were basically used for handling, retrieving and analysing the

large amounts of sequence data. Nowadays, Bioinformatics tools are already

being used for predicting and modelling various aspects of living systems,

and also for building and maintaining databases of biological data.

A large amount of the information discovered in Molecular Biology has

been mainly published in BioLiterature (a shorter designation for the bio-

logical and biomedical scientific literature). Analysing and identifying in-

formation in a large collection of unstructured texts is a painful and hard

task, even to an expert. To improve the access to the information, most

researchers also deposit their findings in databases in a structured form. For

instance, databases, such as UniProt (Universal Protein Knowledgebase),

collect and distribute biological information (Apweiler et al., 2004). How-

ever, the management of these databases also became a complex problem,

and most of them contain a significant number of errors (Devos and Valencia,

2001). Therefore, researchers cannot only rely in the facts available in these
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databases. They also need the evidence substantiating them, which is nor-

mally present in the BioLiterature. The evidence can be the description of

the biological setting where the experiment was conducted or the subsequent

discussion of the results. Most facts are only valid in a specific biological

setting, and should not be directly extrapolated to other cases. In addition,

different research communities have different needs and requirements at a

given period in time. As these constraints evolve, its management becomes

harder to fulfil by databases, which have a static structure. Thus, researchers

tend to use databases as an additional source to store and find facts, but the

evidence substantiating them is still described as unstructured text, given

its higher flexibility. As a consequence, a large amount of the knowledge

acquired in Molecular Biology can only be found in the BioLiterature.

At present, most access to BioLiterature is done through PubMed, an

interface that gives open access to over 15 million citations for documents re-

lated to life sciences (Wheeler et al., 2003). These citations are mainly issued

from MEDLINE, a BioLiterature repository of abstracts and bibliographic

information. Figure 1.1 presents the number of citations added to MEDLINE

in the past decades, showing that there is an increasing large amount of docu-

ments that researchers have to deal with. As biological data and information

continue to grow exponentially, the need for efficient access to BioLiterature

is becoming critical to allow the researchers to conduct informed work, avoid

repetition, and generate new hypotheses.

An approach to improve the access to the knowledge published in Bio-

Literature is to use Text Mining, which aims at automatically extracting

knowledge from natural language text (Hearst, 1999). The application of

text-mining tools to BioLiterature started just a few years ago (Andrade

and Bork, 2000). Since then, the interest in the topic has been steadily in-
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Figure 1.1: Chronological listing of the number of citations present in MEDLINE from
its beginning to the present day.

creasing, motivated by the vast amount of documents that curators have to

read to update biological databases, or simply to help researchers keep up

with progress in a specific area (Couto and Silva, 2005). Thus, Bioinfor-

matics tools are increasingly using Text Mining to collect more information

about the concepts they analyse. Text-mining tools have mainly been used

to identify:

• entities, such as genes, proteins and cellular components;

• relationships, such as protein localisation or protein interactions;

• events, such as experimental methods used to discover protein interac-

tions.

3
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An important application of text-mining tools is the automatic annota-

tion of genes and proteins. A gene or protein annotation consists of a pair

composed by the gene or protein and a description of its biological role.

The biological role is often a concept from a BioOntology, which organises

and describes biological concepts and their relationships. Using a BioOn-

tology to annotate genes or proteins avoids ambiguous statements that are

domain specific and context dependent. For example, the Gene Ontology is

a well-established structured vocabulary that for example has been success-

fully used for gene annotation of different species (GO-Consortium, 2004).

To understand the activity of a gene or protein, it is also important to know

the biological entities that interact with it. Thus, the annotation of a gene

or protein also involves identifying interacting chemical substances, drugs,

genes and proteins.

Nowadays, the performance of state-of-the-art text-mining tools for au-

tomatic annotation of genes or proteins is still not acceptable by curators.

Gene or protein annotation is more subjective and requires more expertise

than simply finding relevant documents and recognising biological entities in

texts. To improve their performance, state-of-the-art text-mining tools use

domain knowledge manually inserted by curators (Yeh et al., 2003). This

knowledge consists of rules inferred from patterns identified in the text, or

on predefined sets of previously annotated texts. Domain knowledge im-

proves precision, but it cannot be easily extended to work on other domains

and demands an extra effort to keep the knowledge updated as BioLitera-

ture evolves. Since this approach is time-consuming and makes the systems

too specific to be extended to new domains, a novel approach to avoid this

process is much needed.
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(a) State-of-the-art approach

(b) Proposed approach

Figure 1.2: Generic process flow diagram for Text Mining of BioLiterature. Text-mining
systems extract relevant information from the BioLiterature. Experts verify
the extracted information before adding it to a database. To obtain accept-
able levels of performance state-of-the-art text-mining systems use domain
knowledge explicitly inserted by experts. Besides being time-consuming and
therefore expensive, this manually created information is generally useless in
other domains. The proposed approach obtains the domain knowledge directly
from publicly available biological databases.

1.1 Objectives and Contributions

Nowadays, publicly available biological databases already provide a signifi-

cant amount of information covering almost all fields of Molecular Biology. I

propose to use this information as domain knowledge for text-mining tools.

Instead of asking experts to provide the domain knowledge, it can be acquired

from biological databases (including BioOntologies) that already contain cu-

rated data.

Figure 1.2 outlines the approach proposed by this thesis. It requires mini-
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mal human intervention, since it avoids the complexities of creating rules and

patterns covering all possible cases or creating training sets that are too spe-

cific to be extended to new domains (Shatkay and Feldman, 2003). Besides

avoiding direct human intervention, automatically collected domain knowl-

edge is usually more extensive than manually generated domain knowledge

and does not become outdated, since public databases can be automatically

tracked for updates as they evolve. The effectiveness of the proposed ap-

proach depends on the following hypothesis.

Hypothesis: In the automatic annotation of biological databases, the use

of domain knowledge automatically integrated from biological data re-

sources represents a feasible alternative to the use of domain knowledge

explicitly created by experts.

This hypothesis was successfully demonstrated in non-biological domains.

For example, Basu et al. (1998) formalise movie recommendation as a classi-

fication problem, and show that classification performance can be improved

using features extracted from the Web. Cohen (2000) proposed a method

that produces new features from a collection of Web pages, which reduced

the error rate of classifiers in a wide variety of situations. External data

sources may not be available for all individual problems, but when it is avail-

able, their information is often useful.

Biological databases that distribute biological information on the Web are

nowadays common, and automatic tools that integrate these data sources are

a potential approach to correct and complete our knowledge about biological

entities (Gerstein, 2000). As a result, Molecular Biology offers a promising

scenario for successful application of text-mining tools based on the proposed

approach.
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Figure 1.3: ProFAL starts by retrieving the relevant documents form BioLiterature. From
this documents, it extracts relevant facts, which are then automatically vali-
dated. Before adding the facts to the database, they are manually verified by
an expert.

To assess the above hypothesis, I developed ProFAL (bioProducts Func-

tional Annotation through Literature), a modular system for automatic an-

notation of biological databases that integrates alternative text-mining meth-

ods. The diagram in Figure 1.3 shows the sequence of processing steps of

ProFAL that are:

Retrieval: receives all the BioLiterature available as input and returns a set

of documents containing relevant information.

Extraction: receives a document as input and returns relevant annotations

reported in the document together with the pieces of text that sub-

stantiate them.

Validation: discards the incorrect annotations found in the previous step.

Verification: receives the annotations together with the evidence texts and

displays this information to the user that takes the final decision about

their accuracy.

Each step aims at reducing the information given as input. For imple-

menting the retrieval, extraction and validation steps, I developed novel text-

mining methods that achieved acceptable results and do not use manually

inserted domain knowledge: The new proposed methods are:
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Figure 1.4: Methods and databases used by ProFAL. WeBTC retrieves the relevant doc-
uments. FiGO extracts relevant facts and their evidence texts. CAC vali-
dates the facts extracted. ProFAL was applied to CAZy, APEG and UniProt
databases.

WeBTC (Web Biological Text Classification): a novel method for gen-

erating new features from biological text involving the integration of ex-

tracted information from biological Web resources (Couto et al., 2003a,

2004a). The new features are used to improve text classification on Bio-

Literature. WeBTC automatically extracts domain knowledge from

publicly available databases that include relevant information about

the scientific documents given as input.

FiGO (Finding Genomic Ontology): a novel unsupervised method for

identifying biological terms organised in a BioOntology in unstructured

text (Couto et al., 2004b, 2005a). FiGO automatically extracts domain

knowledge from the information content of each word present in the

nomenclature of the BioOntology.

CAC (Correlate the Annotations’ Components): a novel method for

discarding misannotations identified by automated systems (Couto et al.,

2003b,d, 2005c). CAC automatically extracts domain knowledge from

previously curated annotations with similar structure and function.

Figure 1.4 shows each method as an implementation of one of the pro-

cessing steps of ProFAL. WeBTC selects relevant documents, FiGO identifies
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relevant annotations on those documents, and CAC validates the annota-

tions identified. The evaluation of these methods included the comparison

of the effectiveness of the proposed methods with alternative state-of-the-art

methods based on different approaches. To assess the viability of both the

proposed methods and ProFAL, I developed novel tools that use ProFAL to

automatically annotate the following biological databases:

CAZy (Carbohydrate Active enZymes): a database that describes the

families of structurally-related catalytic and carbohydrate-binding mod-

ules (or functional domains) of enzymes that degrade, modify, or create

glycosidic bonds (Coutinho and Henrissat, 1999). ProFAL was applied

to CAZy in collaboration with the AFMB-CNRS (Architecture et Fonc-

tion des Macromolécules Biologiques, Marseille, France) to automati-

cally add bibliographic information about each CAZy entry.

APEG (Arabidopsis Pollen Expressed Gene): a database that provides

functional information about Arabidopsis thaliana pollen selectively ex-

pressed genes (Jain, 2004). ProFAL was applied to APEG in collabora-

tion with the IGC (Instituto Gulbenkian de Ciência, Oeiras, Portugal)

to automatically annotate the genes in APEG (Jain et al., 2005).

UniProt: a generic database that aims at providing information about all

known proteins. The new tool, named GOAnnotator, was designed in

collaboration with the EBI (European Bioinformatics Institute, Hinx-

ton, UK) to bring together evidence from the uncurated annotations

and facts extracted from the BioLiterature linked to UniProt entries

(Couto et al., 2005e).

The observation of ProFAL and the proposed methods operating in dif-

ferent realistic scenarios demonstrated that, with the proposed approach, it
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is possible to produce tools that are both efficient and useful to database cu-

rators with much smaller update and maintenance costs than those requiring

manually inserted domain knowledge.

1.2 Methodology

The hypothesis was validated by applying the scientific method described by

Adrion (1993). I developed a theory describing each solution proposed, and

tested it to verify the claims of the hypothesis. Each solution was a text-

mining method integrating domain knowledge automatically collected from

publicly databases. Each test evaluated the performance of the developed

method in comparison to alternative methods.

The experimental data used in each test was collected using a controlled

method (Zelkowitz and Wallace, 1998). WeBTC and FiGO were submitted

to challenging evaluations. These evaluations compared the performance

of different approaches in solving the same tasks using the same data at

the same time. CAC was evaluated using the data from the challenging

evaluation in which FiGO participated. Although not statistically significant,

the datasets used by these challenging evaluations were carefully selected to

be representative enough to allow meaningful and accurate conclusions.

In addition to the individual evaluation of each proposed method, I eval-

uated the effectiveness of the proposed approach in a real environment. For

CAZy, APEG, and UniProt, I developed tools that integrated ProFAL in

their curation process. The teams of each database used these tools to eval-

uate the information provided by ProFAL.

The performance was measured using the standard evaluation metrics:

precision, recall, and F-measure (Manning and Schütze, 1999). Precision
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measures the number of correct answers divided by the number of answers

returned by a tool. Recall measures the number of correct answers divided by

the maximum number of answers that can be correct. F-measure combines

precision and recall by calculating the harmonic mean of the two measures:

F-measure =
2× precision× recall

precision + recall
(1.1)

1.3 Results

In all experiments, ProFAL has shown to be useful in finding new biologic

annotations and providing a user-friendly interface for the curation process.

ProFAL obtained the lowest performance in CAZy, but the evaluation took

place with an early version of ProFAL. Since then ProFAL increased the levels

of performance, reaching high levels of precision that meet the expectations

of the curation process. These performance levels were only possible by

integrating the novel methods, which also obtained positive results on their

own:

• WeBTC was able to significantly increase the precision (reaching 100%)

of a standard classification method. The performance of WeBTC was

evaluated in the BioText Task of KDD2002 Cup versus state-of-the-art

systems (Yeh et al., 2003). The evaluation indicated that WeBTC pro-

vided an effective alternative to enhance the performance of standard

classification methods.

• FiGO obtained a good performance in BioCreAtIvE (Critical Assess-

ment of Information Extraction systems in Biology) (Hirschman et al.,

2005). Compared with the other submissions, FiGO demonstrated to
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be an effective approach to recognize terms in BioLiterature, and to

improve the performance of automatic annotation systems.

• CAC was applied to a set of annotations automatically extracted from

BioLiterature. The method was able to improve the F-measure by

achieving a large increase in precision for a low decrease in recall. This

results show that CAC can effectively be used to discard incorrect an-

notations generated by automatic systems.

1.4 Organisation of the Dissertation

The remainder of this thesis is organised into four parts. The first part

includes Chapters 2 and 3. They introduce the necessary background to

comprehend the following Chapters. Chapter 4 represents the second part.

It describes ProFAL in detail. The third part contains the description of the

proposed methods and their evaluation in Chapters 5, 6 and 7. Chapter 8

represents the fourth part and presents the main conclusions of this thesis.

The remainder of this Section summarises the contents of each Chapter.

Chapter 2 introduces basic concepts of Bioinformatics, describing how the

enormous amount of biological data is being managed in public databases, the

main problems of these databases and how they have been recently tackled

by BioOntologies.

Chapter 3 introduces basics concepts of Text Mining and its application to

BioLiterature, with a special focus on automatic gene and protein annotation.

The Chapter describes the main approaches taken and presents, classifies

and discusses some of state-of-the-art systems, which have been developed

for automatically annotating genes or proteins.

ProFAL was designed to integrate the research contributions of this thesis

12



and demonstrate their viability in realistic scenarios. Chapter 4 presents the

architecture of ProFAL, and describes the successful application of ProFAL

to CAZy, APEG and UniProt databases. For each database, the Chapter

describes the tool developed for the manual verification of the data, and

discusses the obtained results.

Chapters 5, 6 and 7 describe WeBTC, FiGO and CAC in detail, respec-

tively. These Chapters presents and discusses the results obtained by each

method.

Finally, Chapter 8 summarises the contributions made by this dissertation

and gives directions for future work building on this research.
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2
Bioinformatics

Biotechnology aims at the transformation and application of biological ma-

terials. This technology can have profound impacts on human health, agri-

culture, the environment and energy. Well-known examples of biotechnology

applications are:

• analysis of a person’s genome and its expression to infer and measure

susceptibility to different diseases and apply treatments at the earliest

possible stages when they are more likely to be successful;

• production of stronger, more drought, disease and insect resistant crops

and improvement of the quality of livestock, making them healthier,

more disease resistant and more productive;

• replacement of pollutant material such as plastics and combustible by

less pollutant biological materials.

Bioinformatics is a recent research area that aims at using computer tech-

nology for uncovering biological knowledge of high relevance to Biotechnology

hidden in the vast amount of molecular biological data. Bioinformatics is an

interdisciplinary research area at the interface among Biology, Biochemistry,

Biophysics, Statistics, Mathematics, and Informatics.

This Chapter does not attempt to provide a complete overview of Bio-

informatics. It only covers the topics related to this dissertation. Some of
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ATGGGGCTCA GCGACGGGGA ATGGCAGTTG GTGCTGAACG TCTGGGGGAA GGTGGAGGCT
GACATCCCAG GCCATGGGCA GGAAGTCCTC ATCAGGCTCT TTAAGGGTCA CCCAGAGACT
CTGGAGAAGT TTGACAAGTT CAAGCACCTG AAGTCAGAGG ACGAGATGAA GGCATCTGAG
GACTTAAAGA AGCATGGTGC CACTGTGCTC ACCGCCCTGG GTGGCATCCT TAAGAAGAAG
GGGCATCATG AGGCAGAGAT TAAGCCCCTG GCACAGTCGC ATGCCACCAA GCACAAGATC
CCCGTGAAGT ACCTGGAGTT CATCTCGGAA TGCATCATCC AGGTTCTGCA GAGCAAGCAT
CCCGGGGACT TTGGTGCTGA TGCCCAGGGG GCCATGAACA AGGCCCTGGA GCTGTTCCGG
AAGGACATGG CCTCCAACTA CAAGGAGCTG GGCTTCCAGG GCTAG

Figure 2.1: DNA coding sequence of the Human Myoglobin gene.
EMBL-Bank accession number = HSMG01.

the described facts are not applicable to all living systems, since in Molec-

ular Biology no rule goes without an exception. The exceptions are usually

rare, thus they were omitted to keep the text clear and easy to perceive. A

more comprehensive overview of Bioinformatics is available in the articles of

Kanehisa and Bork (2003); Chicurel (2002); Cohen (2004) or in the book of

Attwood and Parry-Smith (1999).

The organisation of the Chapter is as follows. Section 2.1 gives a brief

review of the basic concepts of Molecular Biology, focusing on the genetic

information contained in each cell. Section 2.2 explains how this information

is being maintained and made available in public databases. Section 2.3 de-

scribes the main sources of structured information used within the research

community to characterise the genetic data. Section 2.4 presents the main

sources of BioLiterature. Section 2.5 outlines current research topics. Fi-

nally, Section 2.6 provides the Web address of each data source and presents

concluding remarks.
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2.1 The Basics of Molecular Biology

Living organisms contain a complex system for storing and processing infor-

mation essential for their survival. The information stored in each organism

is transmitted from generation to generation through the process of reproduc-

tion, which causes their offspring to resemble their parents. The information

is stored in DNA (deoxyribonucleic acid), a chain of phosphodiester-linked

nucleotide residues inside a cell that contains the genetic instructions for

creating and maintaining living systems (Alberts et al., 1989).

Each nucleotide residue consists of three parts: a deoxyribose sugar, a

phosphate group and a nitrogenous base. There are four bases in DNA:

adenine, thymine, guanine, and cytosine, which are usually denoted by A,

T, G and C, respectively. A DNA molecule is normally represented as a

sequence of characters, one for each base. For example, Figure 2.1 shows the

DNA sequence of the Human Myoglobin gene from 5’ to 3’ (see below) as the

usual convention.

One end of the DNA molecule is referred to as 5’ (five prime) and the other

end is referred to as 3’ (three prime) according to the number of carbon atoms

in the last deoxyribose sugar. A chromosome is composed of a continuous

chain of DNA nucleotide residues stabilised by DNA-interacting proteins and

is typically present in the cellular nucleus. The number of chromosomes inside

a cell depends on the species. The genome is the entire DNA contained in

the chromosomes. Figure 2.2 shows the generic structure of this genetic

information.

The genes are segments of DNA that encode genetic instructions for the

protein synthesis. Figure 2.3 shows the transcription and translation mech-

anisms present in every cell, which are jointly responsible for the protein

synthesis. These mechanisms read the active genes to produce proteins. In
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Figure 2.2: A chromosome is a long strand of DNA in the nucleus of a cell. The DNA is
composed by two anti-parallel chains of nucleotides twisted into a double helix
and joined by hydrogen bonds.

simple organisms, a gene encodes a single protein, but in complex organisms

a single gene can encode different proteins by alternative splicing (different

combinations of the gene sequence). Independently of their type, all the cells

in an organism contain identical DNA. However, on each individual cell only a
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Figure 2.3: The segment of DNA that encodes a gene is transcribed into a molecule of
messenger RNA (mRNA), which is then translated into a protein. This is the
process by which proteins are made from the instructions encoded in DNA.

small fraction of the genes are active according to the cell cycle, environment

and external signals.

The segment of DNA encoding a gene is first transcribed to a molecule

of RNA (ribonucleic acid), which is then translated to a protein. RNA is a

temporary intermediary in the transmission of information from the DNA to

the protein, and it can be translated to proteins directly or in a processed

19
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AMNKALELFRKDMASNYKELGFQG

Figure 2.4: Human Myoglobin protein sequence.
UniProt accession number = P02144.

DNA RNA Protein
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Transcription Translation

Figure 2.5: The central dogma of molecular biology.

form. The replication and transcription mechanisms read DNA in the 3’

to 5’ direction, while the translation mechanisms read RNA in the opposite

direction.

Proteins are sequences of amino acid residues arranged in a specific order.

Amino acids are a group of 20 different kinds of small molecules, which

are also usually denoted by an alphabetic character. Each amino acid of a

protein results from a set of three bases in the gene sequence. For example,

Figure 2.4 shows Human Myoglobin protein sequence synthesised from the

Human Myoglobin gene (sequence shown in Figure 2.1). The two ends of the

amino acid chain are referred to as the amino terminus (N-terminus) and the

carboxy terminus (C-terminus), corresponding to the 5’ and 3’ ends of the

gene, respectively.

Replication is the mechanism responsible for producing identical copies of

the original DNA so that it can be passed to new cells and offspring. Errors

in the transmission of genetic material can have serious effects on the cell

viability, but they are also at the basis of genome evolution and life diversity.
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The transcription, translation and replication mechanisms form the central

dogma of molecular biology as illustrated in Figure 2.5 (Crick, 1958).

The shape into which a protein naturally folds is known as its native state,

which is determined by its sequence of amino acids residues. Figure 2.6 shows

the four levels that define the structure of a protein.

Primary structure: sequence of amino acids residues that compose a polypep-

tide chain;

Secondary structure: highly patterned sub-structures, i.e. segments of

the polypeptide chain that assume a stable and regular shapes (strands

or helices);

Tertiary structure: the 3D (3-Dimensional) conformation assumed by a

single polypeptide chain.

Quaternary structure: structure level assumed only by some proteins where

individual polypeptide chains, forming protein subunits, are combined

to get the final functional form.

For example, Figure 2.7 shows a representation of the 3D structure of the

Human Myoglobin protein.

Proteins are basic components of all living cells and control most of the

functioning of living systems. They perform a wide variety of activities in

the cell. Some proteins are enzymes and catalyse chemical reactions in the

cell, but proteins can also perform structural and regulation activities. The

activity of a gene is commonly considered the set of activities performed by

the proteins it encodes, which can be indirectly found through the transcrip-

tion levels or more directly through the quantification of expressed proteins.

Only a reduced number of genes do not contain information for expressing

proteins.
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Figure 2.6: Proteins are amino acid chains that fold into unique 3D protein structures.
The structure of a protein has four distinct aspects, all of them unequivocally
determined by its amino acids sequence.
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Source: Image Library of Biological Macromolecules

Figure 2.7: 3D structure of Human Myoglobin protein.
PDB accession number = 2MM1.

The activity or function of a protein can be defined at different levels:

phenotypic (effect on the outward appearance of an organism), cellular, and

molecular levels (Boork et al., 1998). Each protein has elementary molec-

ular functions that are normally independent of the environment, such as

catalytic (acceleration of a chemical reaction) or binding (capacity to hold

or to attach to other molecules) activities. Sets of proteins interact to per-

form a variety of cellular functions, such as metabolism (transformation of

molecules), signal transduction or RNA processing. A protein can act in

different cellular localisations and be involved in different cellular functions

while performing the same molecular function. At a higher level, the set
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Organism Bases Genes Chromosomes
Homo sapiens (human) 2,900 Mb 30,000 46
Rattus norvegicus (rat) 2,750 Mb 30,000 42
Mus musculus (mouse) 2,500 Mb 30,000 40

Drosophila melanogaster (fruit fly) 180 Mb 13,600 8
Arabidopsis thaliana (plant) 125 Mb 25,500 5

Caenorhabditis elegans (roundworm) 97 Mb 19,100 6
Saccharomyces cerevisiae (yeast) 12 Mb 6,300 16

Escherichia coli (bacteria) 4.7 Mb 3,200 1
H. influenzae (bacteria) 1.8 Mb 1,700 1

Source: U.S. Department of Energy Human Genome Program (http://www.ornl.gov/hgmis/)

Table 2.1: Comparative genome sizes of humans and other organisms. The table shows for
each organism the estimated number of DNA bases and genes, and the exact
number of chromosomes in the genome. The amount of DNA is not proportional
to the number of genes.

of all cellular functions perform phenotypic functions, which determine the

structure (morphology), functioning (physiology) or behaviour (psychology)

of a living system.

Identifying the activities of genes and proteins will allow a better under-

standing of how living systems work (Nowak, 1995). However, identifying

the activities of genes and proteins is a non-trivial task. The activity of a

gene or protein is normally regulated by other genes or proteins that inter-

act with it, and the number of genes and proteins in a given organism is

enormous. For example, recent studies indicate that there are about 25,000

unique human genes, and at least 20% of them encode more than one protein

(Larsson et al., 2005). Moreover, the behaviour of genes and proteins is not

stable. Their activity can be dramatically affected by slight changes in the

environment, such as different molecular signals or physiological conditions.
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2.2 Biological Databases

The large amount of biological data available nowadays has transformed the

traditional way of research and development in life sciences. For example, in

December 2005 there were 332 complete genomes published and 1,766 genome

projects in progress1. Table 2.1 shows the large amount of information that

is being produced by these projects.

The original focus of Bioinformatics was on the creation and management

of databases that store the biological information being produced. Like bio-

logical data, the amount of public biological databases has grown at an ex-

ponential rate. Nowadays, there are virtually thousands of public databases

available on the Web. However, most of them link their data to a few pri-

mary databases. Primary databases aim at storing the existing sequence

and structural information of genes and proteins. Occasionally, they also in-

clude functional information. These databases add new information mainly

through direct submission, and most of them use crosscheck tools for vali-

dating and updating their data. The primary databases used in this thesis

are:

EMBL-Bank (EMBL Nucleotide Sequence Database): the Europe’s

primary nucleotide sequence resource (Kanz et al., 2005). Main sources

for DNA and RNA sequences are direct submissions from individual re-

searchers, genome sequencing projects and patent applications. In De-

cember 2005, EMBL-Bank contained 64,619,747 sequence entries com-

prising 116,719,333,361 nucleotides.

GenBank: a repository of genetic sequence data, containing an annotated

collection of all publicly available DNA sequences (Benson et al., 2004).

1http://www.genomesonline.org/
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The information in GenBank is maintained uniformly across the col-

laborating databases: the EMBL-Bank Nucleotide Sequence Database,

and the DNA Data Bank of Japan (DDBJ). The gene sequences are

associated with protein information by using the PID, a unique protein

identification number that is also used by the collaborating databases.

In December 2004, GenBank contained approximately 56,037,734,462

nucleic acids bases in 52,016,762 sequence records.

UniProt (Universal Protein Resource): a database of protein sequence

and functional data, created by joining the information in SwissProt,

TrEMBL, and PIR databases (Apweiler et al., 2004). UniProt aims at

removing redundant protein sequences and at curating the information

based on experimental data. However, the level of annotation on a sin-

gle entry can vary significantly. In December 2005, UniProt contained

2,710,972 sequence records.

PDB (Protein Data Bank): a repository for the processing and distribu-

tion of 3D biological macromolecular structure data (Berman et al.,

2000). In December 2005, PDB contained 34,375 protein structures.

Additional biological databases can be found in the catalogue of biological

resources maintained by the European Bioinformatics Institute2, or in the

Nucleic Acids Research Database Categories List3.

Secondary databases aim at organizing, integrating and classifying all, or

more commonly a part of, the information stored in the primary databases.

These databases can focus on specific species and/or on a specific set of

activities. The secondary databases used in this thesis are:

2http://www.ebi.ac.uk/biocat/
3http://www3.oup.co.uk/nar/database/c/
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FlyBase: a comprehensive database for information on the genetics and

molecular biology of Drosophila (fruit fly) (Rubin, 1996). This database

managed 57,216 genes in December 2005.

APEG (Arabidopsis Pollen Expressed Gene): a database that

describes the function of Arabidopsis thaliana pollen selectively ex-

pressed genes (Jain, 2004). This database managed 147 genes in De-

cember 2005.

CAZy (Carbohydrate Active enZymes): a database that describes the

families of structurally-related catalytic and carbohydrate-binding mod-

ules (or functional domains) of enzymes that degrade, modify, or create

glycosidic bonds (Coutinho and Henrissat, 1999). This database man-

aged over 41,000 proteins in December 2005.

GOA (Gene Ontology Annotation): a database of protein annotations

within the UniProt Knowledgebase (Camon et al., 2004). It contains

high-quality curated annotations, but manual annotation tends to be

slow and therefore covers less than 3% of UniProt. For better coverage,

GOA also integrates uncurated annotations deduced from automatic

mappings between UniProt and other manually curated databases.

This database contained 8,146,303 protein annotations in December

2005.

Pfam: a database that provides a set of protein domains and families (Bate-

man et al., 2004). The Pfam families are constructed semi-automatically

using hidden Markov models (HMMs). Each family describes a set of

related proteins that can have identical molecular functions, are in-

volved in the same process, or act in the same cellular location. This

database contained 8183 families in December 2005.
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GeneRIF: a database of functional gene annotations submitted by the re-

search community (Mitchell et al., 2003). The submissions are reviewed

for inappropriate content and typographical errors. The annotations

aim at facilitating the access to documents reporting experiments rel-

evant to understand a gene and its function. This database contained

bibliographic annotations for more than 32,000 genes in December 2005.

Most primary databases also link their data to complementary informa-

tion found in secondary databases. For example, UniProt links its proteins

to Pfam families. Normally, secondary databases contain additional exper-

imental data not present in primary databases. These additional experi-

mental data are most of the times essential for understanding the biological

roles of genes and proteins. Frequently, these data are identified by curators

through careful analysis of the BioLiterature. Since the knowledge of how

genes and proteins interact is fundamental to understand their activity, some

additional experimental data provides information about the networks of in-

teracting genes and proteins, instead of sequence or structural information.

This information is generated by post-genome projects that are analysing

metabolic, gene regulatory and protein-protein interaction networks. Given

the transient structure of this information, these projects are producing even

more data than genomic projects (Kitano, 2002).

Traditional functional characterisation of genes and proteins cannot cope

with the large amount of sequences being produced. Therefore, automatic

tools have been used to extrapolate functional annotations from similar func-

tionally characterised sequences. However, these tools have also produced a

significant number of misannotations that are now present in the databases

(Devos and Valencia, 2001). For example, the modular nature of proteins is

often disregarded, and therefore some functional annotations being extrapo-
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lated between proteins based on similar parts of the sequence are unrelated

to the functional annotation. Even more problematic, some of these tools are

extrapolating new annotations from misannotations and therefore spreading

the errors, because most annotation efforts do not distinguish between ex-

trapolated and curated annotations.

Functional characterisation is not normally linked to the experimental

evidence that substantiates it, which makes the judgement about what is

correct difficult. The misannotations present in the databases includes under-

predictions and over-predictions (Doerks et al., 1998):

Under-prediction: an annotation that is too generic. Even though being

usually correct, these annotations are of little value for the researchers.

Over-prediction: an annotation that is too precise and restrictive. These

annotations are normally the result of wrong extrapolations, which

disregard small variations in the sequence that are enough to change

the protein specificity.

The right equilibrium between under and over predictions is hard to establish.

Under-predictions can sometimes provide useful outlines of many proteins to

non-experts, and over-predictions can sometimes provide useful hints about

a protein’s biological role to experts, which are able to filter the errors.

The lack of a standard nomenclature across biological databases also

makes the crosschecking normally ineffective in removing the errors. Of-

ten we can find different names (synonyms) for the same genes or proteins,

or, even worse, different genes or proteins from different organisms sharing

the same name (homonyms) (Rebholz-Schuhmann et al., 2005).
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BioOntology Advantage Disadvantage
EC deep specificity ambiguity

MeSH literature indexing narrow scope
GO broad scope and wide applicability low specificity

Table 2.2: BioOntologies, main advantage and disadvantage.

2.3 BioOntologies

Biological databases annotate genes or proteins with statements that describe

their biological role. Sometimes, these annotations are stored as ambiguous

statements that are domain specific and context dependent. To cope with

this, the research community is developing and using BioOntologies to an-

notate genes and proteins (Stevens et al., 2003). Ontology is defined as a

specification of a conceptualisation that describes concepts and relationships

used within a community (Gruber, 1993). This is a generic definition of on-

tology, which comprises different ways for describing the concepts and the

relationships. For example, controlled vocabularies, taxonomies and the-

saurus are considered to be ontologies. Controlled vocabulary is a list of

terms that have been enumerated explicitly. Taxonomy is a collection of

controlled vocabulary terms organised into a hierarchical structure. The-

saurus is a networked collection of controlled vocabulary terms. Ontologies

enable knowledge sharing and reuse, but designing them is a complex task.

They require a common agreement among the members of a community on

concepts that change over time.

In enzymology, the IUBMB (International Union of Biochemistry and

Molecular Biology) maintains the EC (Enzyme Commission) hierarchy, which

provides a hierarchical classification schema for enzymes (NC-IUBMB, 1992).

The classification is limited to only four numbers, the first of which defines

the kind of reaction catalysed, the next two define the chemical nature of the
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substrates, and the fourth is a catalogue number. In December 2005, there

were 4,579 enzyme activities for which Enzyme Commission (EC) numbers

have been assigned4. Updates and revisions of the hierarchy are rare, and

therefore some biological reactions have no EC numbers. This kind of clas-

sification is also restrictive, which can explain some of its ambiguity. For

example, there are EC numbers describing generic reactions that cover more

precise reactions described by a more recent EC number.

In the health sciences, the National Library of Medicine provides the

MeSH (Medical Subject Headings) BioOntology (Nelson et al., 2004). It

consists of sets of clinical terms naming descriptors in a hierarchical struc-

ture. There are 22,997 descriptors in MeSH in December 2005. The MeSH

thesaurus is mainly used for indexing scientific documents, and it is continu-

ally revised and updated. People having subject matter knowledge perform

literature selection, thesaurus maintenance and indexing. This provides high

accuracy and consistency, but also low coverage. Therefore, most biological

features are out of the scope of MeSH, as it is often restricted to clinical

terms.

The GO (Gene Ontology) project is one of the major efforts in Molecular

Biology, for constructing a BioOntology of broad scope and wide applicability

(Bada et al., 2004). GO provides a structured controlled vocabulary of gene

and protein biological roles, which can be applied to different species (GO-

Consortium, 2004). GO comprised 20,069 distinct terms in December 2005.

Since the activity or function of a protein can be defined at different levels,

GO has three different aspects: molecular function, biological process and

cellular component. Each protein has elementary molecular functions that

normally are independent of the environment, such as catalytic or binding

4http://www.expasy.org/enzyme/
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Figure 2.8: Sub-graph of GO.

activities. Sets of proteins interact and are involved in cellular processes,

such as metabolism, signal transduction or RNA processing. Proteins can

act in different cellular localisations, such as the nucleus or membrane.

GO organises the concepts as a DAG (Directed Acyclic Graph), one for

each aspect. Each node of the graph represents a concept, and the edges

represent the links between concepts (see example in Figure 2.8). Links can

represent two relationship types: is-a and part-of. GO is a dynamic hierar-

chy: its content changes every month with the publication of a new release.

Any user can request modifications to GO, which is maintained by a group

of curators who add, remove and change terms and their relationships in re-

sponse to modification requests. This prevents GO from becoming outdated

and from providing incorrect information.

GO started by adding generic terms and simple relationships to provide

a complete coverage of the Molecular Biology domain. Thus, the main limi-

tation of GO is the lack of specific terms that, for example, represent precise

biochemical reactions like EC numbers. However, as different research com-

munities understand the importance of adding their domain knowledge to
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GO, it will acquire more specific terms and relationships and therefore over-

come this limitation.

2.4 BioLiterature

The notion of BioLiterature used in this thesis includes any type of scien-

tific text related to Molecular Biology. The text is mainly available in the

following formats:

Statement: a short piece of text that is normally a remark or an evidence

for a fact stored in a database.

Abstract: a short summary of a scientific document.

Full-text: the full-text of a scientific document including scattered text such

as figure labels and footnotes.

Statements contain more syntactic and semantic errors than abstracts, since

they are not peer-reviewed, but they are directly linked to the facts stored in

the databases. The main advantage of using statements or abstracts is the

brief and succinct format on which the information is expressed. However,

usually this brief description is insufficient to draw a solid conclusion, since

the authors have to skip some important details given the text size constraint.

These details can only be found in the full-text of a document, which con-

tains a complete description of the results obtained. For example, important

details are sometimes only present in figure labels. The main problem of

full-text is its availability, since most of the full-text has restricted access. In

addition, the structure of the full-text and the format on which is available

varies according to the journal in where it was published. Having more infor-

mation does not mean that it is all beneficial to text-mining tools. Some of
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the information may even induce the tools in error. For example, the value

of a fact reported in the Results Section would be different if the fact was

reported in the Related Work Section. Therefore, the use of full-text will also

create several problems regarding the quality of information extracted (Shah

et al., 2004).

Most access to BioLiterature is done through PubMed, which in 2005

included over than 15 million citations from MEDLINE and other life science

journals dating from the 1950s (Wheeler et al., 2003). PubMed aims at

making it easier for the general public to search BioLiterature. The users can

search for citations by author name, journal title or keywords. PubMed also

includes links to full-text documents and other related resources. MEDLINE

is a large repository of citations to the BioLiterature. It contains nearly

11 million citations from over 7,300 different publications from 1965 to the

present day. Besides the bibliographic citations, MEDLINE also stores the

abstracts of most documents, especially of the newer ones. The articles from

1950 through 1965 are in OLDMEDLINE, which contains approximately

1,760,000 citations (Demsey et al., 2003). These old citations do not contain

the abstract and certain fields may contain outdated or erroneous data.

MEDLINE was designed to deal with printed documents, but nowadays

many journals provide the electronic version of their documents. Moreover,

some of them became Open Access Publications, which means that their

documents are freely available with unrestricted use. These documents have

been exploited by tools, such as Google Scholar5, Scirus6 or EBSCO7, which

can be used to search and locate scientific documents. One of the major free

digital archives of life sciences full-text documents is PMC (PubMed Central),

5http://scholar.google.com/
6http://www.scirus.com/
7http://www.epnet.com/
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which aims at preserving and maintaining access to this new generation of

electronic documents. Presently, PMC includes over 400,000 documents. The

availability of full-text documents offers new opportunities to text-mining

tools, which are most of times restricted to analysing only the abstracts of

scientific documents.

2.5 Current Research Topics

Biologists are no longer capable of analysing the vast amount of genomic

data being produced without using computational techniques. Thus, more

than just managing and gathering the vast amount of genomic data, Bioin-

formatics is now focusing on exploring all these data to aid researchers in

acquiring a better understanding of how living systems work (Couto et al.,

2005d).

Typical tasks where Bioinformatics methods have been employed include:

Comparing Sequences: When a novel protein sequence is discovered, re-

searchers attempt to find out as much as possible about it before lab-

oratory testing. This involves comparing the novel sequence to other

existing sequences, in particular to those already annotated (Altschul

et al., 1997).

Constructing Evolutionary (Phylogenetic) Trees: Sequence data have

been used to generate graphical representations of the evolutionary re-

lationship among taxonomic groups or sequences (Nei, 1996).

Detecting Patterns in Sequences: Some functional features of proteins

can be detected by recognizing patterns in their sequence (Rigoutsos

et al., 2000). The patterns are like regular expressions that have been

35



identified in several proteins sharing the same feature. These patterns

are useful to extrapolate the features of novel sequences. For example,

they are used to automatically annotate UniProt/TrEMBL proteins

(Bairoch and Apweiler, 2000).

Determining 3D Structures from Sequences: Most functional features

of proteins depend on the protein 3D structure, but determining the

structure in laboratory is expensive. Thus, a great effort has been

devoted to the prediction of the protein structure from its sequence.

Several approaches have been developed to tackle this problem, such

as ab initio techniques, threading and homology modelling. Most of

the systems participate in CASP (Critical Assessment of Techniques

for Protein Structure Prediction), an annual international competition

(Moult, 2005).

Inferring Cell Regulation: The activity of a protein is normally regulated

by several molecular interactions that occur in the cell. Thus, discover-

ing and modelling these interactions is an essential issue to understand

what happens in the cell (Kitano, 2002).

2.6 Conclusions

This Chapter presented the topics of Molecular Biology related to this dis-

sertation. It explained how the genetic information is being maintained and

explored, which is a non-trivial problem due to the enormous amount of in-

formation available and to its high complexity. Table 2.3 presents the list of

data sources described in this Chapter together with their Web addresses.

Bioinformatics tools have been developed to cope with this problem. In a few
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Primary Databases
EMBL-Bank http://www.ebi.ac.uk/embl/

GenBank http://www.ncbi.nlm.nih.gov/Genbank/

DDBJ http://www.ddbj.nig.ac.jp/

UniProt http://www.ebi.ac.uk/uniprot/

PDB http://www.rcsb.org/pdb/

Secondary Databases
FlyBase http://www.flybase.org/

APEG http://xldb.fc.ul.pt/rebil/tools/apeg/

CAZy http://afmb.cnrs-mrs.fr/CAZY/

GOA http://www.ebi.ac.uk/goa/

Pfam http://www.sanger.ac.uk/Software/Pfam/

GeneRIF http://www.ncbi.nlm.nih.gov/projects/GeneRIF/GeneRIFhelp.html

BioOntologies
GO http://www.geneontology.org/

MeSH http://www.nlm.nih.gov/mesh/meshhome.html

EC http://www.chem.qmw.ac.uk/iubmb/enzyme/

BioLiterature
MEDLINE http://www.nlm.nih.gov/databases/databases_medline.html

OLDMEDLINE http://www.nlm.nih.gov/databases/databases_oldmedline.html

PubMed http://www.pubmed.org/

PMC http://www.pubmedcentral.nih.gov/

Table 2.3: Data sources and their Web addresses.

cases the existing tools already achieve satisfactory results, but this problem

is, in general, still far from being solved.

Now that we have most of the genomes available, the next big challenge

is to understand the function of genes and proteins on concerted action, so

the scientific community can understand how the living systems work. This

constitutes a new discipline of Systems Biology (Ideker et al., 2001). This

discipline will produce even more data that need to be processed, explored

and disseminated. The fusion of biology and information sciences was there-

fore inevitable and we can anticipate that it will continue to expand in the

future.
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Molecular Biology has many exciting and hard problems to address. To

solve them, we may need additional data not yet produced. Nevertheless,

we will need novel Bioinformatics tools to reveal important information from

the vast amount of data being produced. The solution to many complex

problems may depend on facts already discovered by previous studies and

published in BioLiterature. Thus, Molecular Biology will benefit from the

development of text-mining tools providing friendly and efficient access to

text reporting existing research achievements.

38



3
Text Mining of
BioLiterature

Text Mining generally concerns the process of extracting relevant and non-

trivial information and knowledge from unstructured text, usually a collec-

tion of documents. One target application of Text Mining is the BioLi-

terature, from where details of experimental results can be automatically

extracted. However, the development of efficient text-mining techniques spe-

cific to BioLiterature is a recent research topic. As a result, the observed

performance of text-mining tools in BioLiterature has been much lower than

in other areas such as news text (Dickman, 2003).

The main problem in BioLiterature is coping with the lack of a stan-

dard nomenclature for describing biologic concepts and entities (Rebholz-

Schuhmann et al., 2005). In BioLiterature, we can often find different terms

referring to the same biological concept or entity (synonyms), or the same

term meaning different biological concepts or entities (homonyms). Genes,

whose name is a common English word, are frequent, which makes it diffi-

cult to recognize biological entities in the text. The information to extract

is also more complex. It is almost impossible to derive a rule without having

a significant number of exceptions.

This Chapter gives an overview of Text Mining and its application to

BioLiterature, with a special focus on automatic gene and protein annota-
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Sentence Prot1 Prot2 protein binds enzyme an to
s1 1 1 2 1 0 0 1
s2 1 0 1 0 1 1 0

Table 3.1: Bag-of-words representation of the following sentences: s1=Protein p1 binds to
protein p2 and s2=Protein p1 is an enzyme.

tion. The organisation of the Chapter is as follows. Section 3.1 explains

the basics of Text Mining. Section 3.2 describes two different approaches

to extract knowledge. Section 3.3 presents examples of state-of-the-art text-

mining systems and discusses their approaches. Section 3.4 describes recent

assessments of text-mining systems. Finally, Section 3.5 presents concluding

remarks.

3.1 The Basics of Text Mining

Text Mining draws from other areas such as Data Mining and NLP (Natural

Language Processing).

TextMining = NLP + DataMining

Data Mining aims at automatically extracting knowledge from structured

data (Hand et al., 2000). Thus, Text Mining is a special case of Data Mining,

where input data is text instead of structured data. Normally, text-mining

systems create structured representations of the text, which are then analysed

by Data Mining tools. Table 3.1 presents the bag-of-words representation of

two sentences, one of the simplest. The text is represented by a vector with

the number of occurrences of each word in the sentences.

This representation can be easily created and manipulated, but ignores

all the text structure. Text-mining systems may also use NLP techniques to
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represent and process text more effectively. NLP is a broad research area

that aims at analysing spoken, handwritten, printed, and electronic text

for different purposes, such as speech recognition or translation (Manning

and Schütze, 1999). The most popular NLP techniques used by text-mining

systems include:

Tokenization: aims at identifying boundaries in the text to fragment the

text into basic units called tokens. The first step in a text-mining

system is to identify the tokens. The token most commonly used is the

word. In most languages, the white-space character can be considered

as accurate boundary to fragment the text into words. This problem

is more complex in languages without explicitly delimiters, such as

Chinese (Wu and Fung, 1994).

Morphology analysis: aims at grouping the words (tokens) that are vari-

ants of a common word, and therefore are normally used with a similar

meaning (Spencer, 1991). This involves the study of the structure and

formation of words. A common kind of inflectional variants results

from the tense on verbs. For example, binding and binds are inflec-

tional variants of bind. Some other word variants result from prefixing,

suffixing, infixing or compounding.

Part-of-speech tagging: aims at labelling each word with its semantic

role, such as article, noun, verb, adjective, preposition or pronoun

(Baker, 1989). This involves the study of the structure and forma-

tion of sentences. The tagging is a classification of words, according to

their semantic role and to their relations to each other in a sentence.

Sense disambiguation: selects the correct meaning of a word in a given

piece of text. For example, compound has two different senses in the ex-
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pressions compound the ingredients and chemical compound. Normally,

the part-of-speech tags are used as a first step in sense disambiguation

(Wilks and Stevenson, 1997)

Parsing: aims at identifying the syntactic structure of a sentence (Earley,

1970). The syntactic structure of a sequence of words is composed by

a set of other syntactic structures related to smaller sequences, except

for the part-of-speech tags that are syntactic structures directly linked

to words. Normally, the syntactic structure of a sentence is represented

by a syntax tree, where leafs represent the words and internal nodes

the syntactic structures. Algorithms to identify the complete syntactic

structure of a sentence are in general inaccurate and time-consuming,

given the combinatorial explosion in long sentences. An alternative is

shallow-parsing, which does not try to parse complex syntactic struc-

tures. Shallow-parsing only splits sentences into phrases, i.e. sub-

sequences of words that represent a grammatical unit, such as noun

phrase or verb phrase.

Anaphora (or co-reference) resolution: aims at determining different se-

quences of words referring to the same entity (Mitkov, 2002). For ex-

ample, in the sentence The enzyme has an intense activity, thus, this

protein should be used. The noun phrases The enzyme and this protein

refer to same entity.

Some of the NLP techniques described above can be implemented using

algorithms also used in Data Mining. For example, part-of-speech taggers

can use Hidden Markov Models (HMMs) to estimate the probability of a

sequence of part of speech assignments (Smith et al., 2004). Not all NLP

techniques improve the performance of a given text-mining system. Thus,
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Approach Advantage Disadvantage
rule-based high precision rules not found
case-based less expertise large training sets

Table 3.2: Text Mining approaches, main advantage and disadvantage.

designers of text-mining systems have to select which NLP techniques would

be useful to achieve their main goal.

3.2 Text Mining Approaches

After creating a structured representation of texts, text-mining systems can

use a rule-based or a case-based approach for extracting knowledge (Leake,

1996).

Rule-based approach: relies on rules inferred from patterns identified from

the text by an expert. The rules represent, in a structured form, the

knowledge acquired by experts when performing the same task. The

expert analyses a subpart of the text and identifies common patterns

in which the relevant information is expressed. These patterns are then

converted to rules to identify the relevant information in the rest of the

text. The main bottleneck of this approach is the manual process of

creating rules and patterns. Besides being time-consuming, this man-

ual process is, in most cases, unable to devise from a subpart of the

text the set of rules that encompass all possible cases.

Case-based approach: relies on a predefined set of texts previously anno-

tated by an expert, which is used to learn a model for the rest of the

text. Cases contain knowledge in an unprocessed form, and they only

describe the output expected by the users for a limited set of examples.

The expert analyses a subpart of the text (training set) and provides
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the output expected to be returned by the text-mining system for that

text. The system uses the training set to create a probabilistic model

that will be applied to the rest of the text. The main bottleneck of this

approach is the selection and creation of a training set large enough to

enable the creation of a model accurate for the rest of the text.

The manual analysis of text requires less expertise in the case-based ap-

proach than in the rule-based approach. In the rule-based approach, the

expert has to identify how the relevant information is expressed in addition

to the expected output. However, rule-based systems can use this expertise

to achieve high precision by selecting the most reliable rules and patterns.

Example

Assume that we need to develop a system to recognise the gene names men-

tioned in a given set of documents.

If we decide to build a rule-based system, we have to ask the expert to

read a subset of documents and provide us a set of rules that can be used to

recognise the gene names in the text. For example, a rule might state that

gene names are in most cases written in uppercase.

Otherwise, if we decide to build a case-based system, we have to ask the

expert to read a subset of documents and highlight the pieces of text where

the gene names occur.

3.3 State-of-the-art Systems

This thesis focuses on text-mining systems that automatically annotate genes

or proteins, like ProFAL. This kind of systems can be categorised according
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to: the mining approach taken (rule-based or case-based), the NLP tech-

niques applied, and the amount of manual intervention required. The fol-

lowing Sections describe state-of-the-art text-mining systems designed for

automatic annotation using this categorisation.

3.3.1 Rule-based Systems

Andrade and Valencia (1998) developed AbXtract, one of the first text-

mining systems trying to characterise the function of genes and proteins

based on information automatically extracted from BioLiterature . The

system assigns relevant keywords to protein families based on a rule

comprising the frequency of the keywords in the abstracts related to

the family. AbXtract relies only on this rule and does not require

human intervention.

Pérez et al. (2004) developed a system that annotates genes with key-

words extracted from abstracts based on mappings among different

BioOntologies. The system uses association rules that can be applied

with all generality to any pair of linked databases.

Corney et al. (2004) developed BioRAT that given a query finds docu-

ments and highlights the most relevant facts in their abstracts or full-

texts. BioRAT uses rules that are exclusively derived from patterns

inserted by the user.

Müller et al. (2004) developed Textpresso, another rule-based system that

finds documents and marks them up with terms from a built-in BioOn-

tology. The system assigns to each entry of the BioOntology regular

expressions that capture how the entry can be expressed in BioLite-

rature. Textpresso is less dependent on the user than BioRAT, since
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many of the regular expressions are automatically generated to account

for regular forms of verbs and nouns.

Kim and Park (2004) developed BioIE, a system that takes more advan-

tage of NLP techniques. It extracts biological interactions from Bio-

Literature and annotates them with GO terms The system uses mor-

phology, sense disambiguation, and rules with syntactic dependencies

to identify GO terms in the text. BioIE uses 1,312 patterns to match

interactions in the sentences, thus it also requires substantial manual

intervention.

Koike et al. (2005) developed a system similar to BioIE, which annotates

gene, protein and families with GO terms extracted from texts. The

system uses morphology, part-of-speech tagging, shallow parsing, and

simple anaphora resolution. To extract the relationships, it uses both

automatically generated and manually inserted rules.

3.3.2 Case-based Systems

Palakal et al. (2003) developed a case-based text-mining system, which

extracts relationships between biological objects (e.g. protein, gene,

cell cycle). The system uses sense disambiguation, and a probabilistic

model to find directional relationships. The model is trained using

examples of sentences expressing a relationship.

Chiang and Yu (2003) developed MeKE, another system that extracts

protein functions from BioLiterature using sentence alignment. MeKE

also uses sense disambiguation. The system uses a statistical classifier

that identifies common patterns in examples of sentences expressing
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System Mining NLP Manual
Andrade and Valencia (1998) rule-based - -

Pérez et al. (2004) rule-based - -
Corney et al. (2004) rule-based Low High
Müller et al. (2004) rule-based Low Medium

Kim and Park (2004) rule-based Medium Medium
Koike et al. (2005) rule-based High Medium

Palakal et al. (2003) case-based Medium Low
Chiang and Yu (2003) case-based Medium Low

ProFAL Hybrid - -

Table 3.3: Categorisation of some recent text-mining systems designed for automatic an-
notation of genes and proteins.

GO annotations. The classifier uses these patterns to decide if a given

sentence expresses a GO annotation.

3.3.3 Discussion

The systems described above show how Text Mining can help curators in

the annotation process. For each system, Table 3.3 indicates the mining

approach taken, the proportion of NLP techniques used and the proportion of

manual intervention needed to generate rules, patterns or training sets. Most

systems rely on domain knowledge manually inserted by curators. Domain

knowledge improves precision, but it cannot be easily extended to work on

other domains and it demands an extra effort to keep the knowledge updated

as BioLiterature evolves. This approach is time-consuming and makes the

systems too specific to be extended to new domains.

Text-mining tools acquire domain knowledge from the curators as rules or

cases. The identification of rules requires more effort from the curators than

the evaluation of a limited set of cases. However, a single rule can express

knowledge not contained in a large set of cases. None of the knowledge
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Evaluation Task Submissions F-measure Precision Recall
BioText Task of document selection 32 78%
KDD2002 Cup gene identification 32 67%
2004 TREC document classification 47 41%

genomics track document selection 59 27%
gene annotation 36 56%

BioCreAtIvE evidence selection 21 78% 23%
protein annotation 18 34% 12%

Table 3.4: Recent challenging evaluations of text-mining systems using BioLiterature.
They compared the performance of different systems in solving a text-mining
task using a given corpus. However, each evaluation evaluated a different task
in a different corpus. Thus, the results cannot be compared among the three
evaluations.

representation techniques subsumes the other: the knowledge enclosed in a

rule is normally not fully expressed by a finite set of cases, and it is difficult

to identify a set of rules encoding all the knowledge expressed by a set of

cases.

ProFAL integrates a suite of methods that automatically collect the do-

main knowledge from databases. ProFAL uses a hybrid mining approach,

since it uses different rules embedded in the proposed methods, which use

the information stored in the databases as training sets. This represents a

novel approach that has the advantages of being less time-consuming, eas-

ier to adapt to new or different conditions, and constantly updated as the

information in the databases evolves.

3.4 Evaluating Text Mining of BioLiterature

Recent advances in text-mining tools using the BioLiterature achieve accept-

able levels of accuracy in identifying gene and protein names in the text.

However, performance of more complex tasks, such as the extraction of func-

tional annotations, is still far from being satisfactory. Recent surveys report

these advances by presenting text-mining tools that are run in different cor-
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pora (collection of documents) to perform different tasks (Hirschman et al.,

2002; Blaschke et al., 2002; Dickman, 2003; Shatkay and Feldman, 2003). On

the other hand, recent challenging evaluations compared the performance of

different approaches in solving the same tasks using the same corpus. Ta-

ble 3.4 summarises these challenging evaluations. There were three different

challenging evaluations:

BioText Task of KDD2002 Cup: consisted on identifying biomedical doc-

uments containing relevant experimental results about Drosophila (fruit

fly), and the genes (transcripts and proteins) involved (Yeh et al., 2003).

The best submission out of 32 obtained an F-measure of 78% in the

document decision, and an F-measure of 67% in the gene decision.

2004 TREC genomics track: consisted of two tasks for identifying rel-

evant documents and documents with relevant experimental results

about the mouse (Hersh et al., 2004).

The first task was a typical Information Retrieval task. A list of docu-

ments and a list of topics were given as input. The goal was to identify

the relevant documents for each topic. The best submission out of 47

obtained a precision of 41%.

The second task comprised the selection of documents with relevant

experimental information. The best submission out of 59 obtained an

F-measure of 27%. In addition to document selection, the task also

comprised automatic annotations of genes. The best submission out of

36 obtained 56% F-measure.

BioCreAtIvE: was a critical assessment of information extraction systems

in biology that comprised two tasks (Hirschman et al., 2005). The first

aimed at identifying genes and proteins in BioLiterature. The best
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submission out of 40 obtained 83% F-measure. The second task ad-

dressed the automatic annotation of human proteins, and involved two

subtasks.

The first subtask required the identification of the texts that provided

the evidence for extracting each annotation. From 21 submissions, the

highest precision was 78% and the highest recall was 23% obtained by

two different submissions.

The second subtask consisted on automatic annotation of proteins.

From 18 submissions, the highest precision was 34% and the highest

recall was 12% obtained by two different submissions.

3.5 Conclusions

Standard techniques have been used to cope with the problems found in Bio-

Literature, but text-mining systems are still far from reaching performance

levels comparable to the obtained in other areas, such as in personal name

recognition on news text (both precision and recall higher than 90%) (Kauf-

mann, 1995). Thus, novel techniques are required to reinforce and further

improve the quality and impact of Text Mining of BioLiterature. The po-

tential benefits to Molecular Biology are immeasurable, and therefore there

is a growing interest in this exciting new research topic.

A useful application of text-mining tools to BioLiterature is in aiding

curators to reduce the amount of information they have to manually process.

Curators are in most cases unable to analyse directly all the information

being published. Thus, text-mining tools can be used to find pieces of text

that contain relevant experimental results. In this activity, the tools do not

necessarily have to obtain high accuracy to be useful, since the curators later
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verify the information obtained by the tool. It is less time-consuming to

scan the provided information for errors than all the information that needs

to be tracked. ProFAL provides annotations together with evidence text and

lets the curator decide about their relevance and accuracy, which makes it a

useful tool to assist curators in this activity.
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4
System: ProFAL

The access to efficient text-mining systems using BioLiterature is crucial to

researchers, enabling them to conduct informed work, avoid repetition, and

generate new hypotheses. To make these systems more accessible and effi-

cient, developers must understand the needs, requirements, and preferences

of users and study how they would use them. This is an often neglected and

non-trivial task. This thesis addresses this task by integrating the proposed

methods in ProFAL (bioProducts Functional Annotation through Litera-

ture), a text-mining system developed to automatically annotate biological

databases (Couto et al., 2003e). This system annotated genes and proteins

of several databases with biological terms reported in BioLiterature. Cura-

tors of these databases evaluated the performance of ProFAL. Thus, besides

individually validating the proposed methods, they were assessed as a whole

in realistic biological settings.

Each evaluation used a quantitative measure to determine the accuracy

of the information provided by ProFAL. These measures are not comparable

to other studies since they evaluated a specific task performed in a restricted

dataset. However, together with the feedback from the users, they were im-

portant to access how useful is ProFAL. User evaluation of a tool is most of

the times subjective, but of extreme importance to achieve intended goals

with effectiveness, efficiency and satisfaction in a realistic scenario. The num-
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ber of curators that evaluated ProFAL was too small to provide a conclusive

demonstration of its usability according to common standards (Jakob, 1994).

Nevertheless, the evaluation shows that it is feasible to develop accessible and

efficient text-mining systems based on the approach proposed by this thesis.

This Chapter describes ProFAL and how it was integrated and used to

annotate three different databases. For each database, the Chapter presents

the results obtained and describes the interface developed for presenting the

information identified by ProFAL. The organisation of the Chapter is as

follows. Section 4.1 describes the architecture of ProFAL. Section 4.2 de-

scribes the application of ProFAL to different databases. Finally, Section 4.3

presents the main conclusions derived from the experience of developing and

using ProFAL in its application environments.

4.1 Architecture of ProFAL

ProFAL was designed as a software system to meet the needs of its target

users. The main properties of ProFAL can be briefly described as:

For: Biological database curators.

Who: Require efficient access to BioLiterature.

The: ProFAL is an automated gene annotation system.

That: Provides the ability to retrieve relevant documents from the BioLite-

rature, to extract annotations together with their evidence texts from

the documents retrieved, and to validate the annotations extracted.

Unlike: Replace human curation.
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BioLiterature

Gene Database

Curator

BioOntology

Retrieval

Extraction

Validation

Verification

Citations

Gene Structure
<<include>>

<<include>>

<<include>>

Figure 4.1: The primary use cases for ProFAL.

Novelty: Does not require domain knowledge explicitly created by experts,

and can be easily applied to different biological databases.

ProFAL considers proteins as a special case of genes. Therefore, the

discussion about gene annotation is also applicable to protein annotation,

and vice versa. An annotation is a (gene, term) pair, associating the gene

(or protein) to the term that describes a biological role of the gene.
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It is not always possible or practical to design a product to have universal

accessibility or usability. However, since different databases were interested in

using ProFAL, it was designed to require minimal adjustments when applied

to a new database. ProFAL uses a generic class diagram that can be easily

integrated with different databases. Appendix A describes in detail this class

diagram, which ProFAL uses to store the generated data and the data from

the biological databases.

Figure 4.1 shows the primary use-case model of ProFAL describing its

interaction with the users and its main processing steps. The model is rep-

resented in UML (Booch et al., 1998). The actors of ProFAL are:

BioLiterature: a collection of scientific documents.

Gene Database: a set of genes, which need to be annotated with terms

from the BioOntology.

Citation: a collection of bibliographic references, which link the genes to

BioLiterature.

Gene Structure: a gene classification scheme that organises the genes ac-

cording to their structure or sequence.

BioOntology: a representation of a set of biological concepts and their re-

lationships.

Curator: an individual who has the ability to manually verify gene anno-

tations.

Each use-case in the model represents a processing step of ProFAL. The

Verification use-case uses the annotations that are identified by the Extrac-

tion use-case and filtered by the Validation use-case. The Extraction use-case
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uses the documents found by the Retrieval use-case to identify the annota-

tions in their text.

The Verification use-case aims at using curators to evaluate all the infor-

mation identified by the other use-cases. Thus, this use-case evaluates the

performance of ProFAL as a whole. The following section describes imple-

mentations of this use-case in three different biological settings and discusses

the results obtained. The Retrieval, Extraction and Validation use-cases are

independent processing steps of ProFAL, which can also be individually as-

sessed. Their implementation using the approach proposed by this thesis and

their assessment is presented in the next three Chapters. The remainder of

this section presents a brief description of each of these use-cases.

Retrieval:

Input: list of genes, a collection of scientific documents (e.g. all the

documents available in PubMed), and a list of external sources

(optional).

Output: for each gene a list of documents that express relevant infor-

mation about the gene.

Process: from the given BioLiterature, the Retrieval use-case selects

for each gene a set of documents that report relevant information

about the gene.

Implementation: Chapter 5.

Extraction:

Input: list of genes, list of documents assigned to each gene, and a

BioOntology.
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Output: list of annotations of the input genes with terms from the

given BioOntology, and evidence texts substantiating the annota-

tions.

Process: in the documents assigned to each gene, the Extraction use-

case identifies annotations that associate the gene with terms from

the given BioOntology. The evidence texts are the sentences in

the document that substantiate the identified annotations.

Implementation: Chapter 6.

Validation:

Input: list of annotations, a structural classification of genes and the

BioOntology used in the Extraction use-case.

Output: confidence score of each annotation being correct.

Process: the Validation use-case automatically scores the annotations

predicted by the Extraction use-case based on heuristics that mea-

sure the confidence degree on the annotation’s correctness. The

heuristics may use the structural information about the genes and

the BioOntology to compare different annotations.

Implementation: Chapter 7.

4.2 Verification Use-Case

The Verification use-case provides an interface to assist the curator to anal-

yse and judge the information identified by ProFAL. The curator verifies

the annotations and the evidence texts, and modifies the confidence scores

of the identified annotations. The following sections describe the interface

implementations and the obtained results in three databases.
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Figure 4.2: Bibliographic interface designed to be integrated in CAZy.

4.2.1 CAZy

CAZy is a database that describes the families of structurally-related cat-

alytic and carbohydrate-binding modules (or functional domains) of enzymes

that degrade, modify, or create glycosidic bonds (Coutinho and Henrissat,

1999). ProFAL was integrated in CAZy to complement the information about

the enzymes in CAZy with automatically extracted bibliographic informa-

tion by taking advantage of the references to external databases, such as

GenBank, UniProt, PDB and others.

Interface

Figure 4.2 presents an example of the bibliographic description of a specific

enzyme, a bacterial k-carrageenase. The interface has two tables: the Pub-

lication table shows the bibliographic references, and the Annotation table

shows the terms annotated with this enzyme. It has two bibliographic ref-

erences. For each reference, the following information is presented: PubMed
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Figure 4.3: CAZy’s bibliographic interface in May 2005.

and MEDLINE accession numbers, title, journal (ISSN ), year of publication,

comments (note), authors and other referenced enzymes. The -3D- symbol

is automatically added into the note field when the document is a PDB ref-

erence. This alerts the curator for the fact that this document may contain

important structural information. The authors column presents the number

of authors through a link to information about them. The DB ac column

presents accession numbers of other CAZy’s enzymes that are also referenced

by the document. The enzyme is annotated with 2 terms. For each refer-

ence the following information is presented: term’s identifier number, term’s

type, term’s name, comments (note), and the documents from where it was

extracted. Both tables have a classification column for curating the entries.

Its default value is 1, and its range goes from 0 to 9. An expert can replace

the entry’s classification according to its relevance. The last row of both

tables has buttons to invoke administrative tools, for inserting new entries,

and to reclassify the presented entries.

Given the great interest on having the proteins directly linked to scientific

documents the Publication table was directly integrated in CAZy’s interface.

Figure 4.3 shows the actual look of the interface. The GO annotations were
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not integrated until now, since GO has at present not enough specificity for

providing valuable characterisations of the classes of enzymes in CAZy.

Results

In 2003, ProFAL assigned 6,377 distinct documents to 17,363 proteins, and

identified 13,869 annotations in the documents, annotating 6,918 proteins

with 1,342 GO terms. Only about 40% of the proteins were annotated be-

cause of the lack of bibliographic references for most proteins. This is not a

limitation of ProFAL since it extracted, on average, 2.2 annotations per doc-

ument. A CAZy curator manually verified 173 extracted annotations related

to 5 distinct families. This curator classified their relevance to the charac-

terisation of the functionality of the families as follows: 32 were classified as

very important, 27 were classified as important, and 36 were classified as not

so important. The remaining 78 annotations were classified as having no rel-

evance. This gives a total of 95 correct annotations and 78 misannotations,

representing a precision of 55%. However, some of the 78 misannotations

could still be correct, since some proteins could also belong to other families

that have not been considered.

ProFAL has been used to periodically add bibliographic references to

proteins recently added to CAZy and to update the bibliographic references

of the other proteins. Last time it was executed, in May 2005, ProFAL

assigned 11,700 distinct documents to 18,345 proteins.

4.2.2 APEG

APEG is a database that describes the function of a collection of pollen

selectively expressed genes of Arabidopsis thaliana (Jain, 2004). ProFAL

was used by APEG to retrieve relevant documents from BioLiterature and
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Figure 4.4: Documents shown by APEG.

for extracting functional annotations from them to add to the gene entries

in APEG (Jain et al., 2005).

Interface

Figure 4.4 shows a list of bibliographic references returned by ProFAL. The

information presented includes, for each document: the document identifier,

its title, the confidence score returned by ProFAL, and a flag that indicates

if it was manually or automatically identified.

Figure 4.5 shows a list of annotations returned by ProFAL. The infor-

mation presented includes: the annotation, the document from which it was

extracted, its evidence text, and the confidence score returned by ProFAL.

62



Figure 4.5: Annotations shown by APEG.

Results

In 2004, ProFAL assigned 55 distinct documents to 71 genes. A curator

of APEG evaluated the annotations extracted by ProFAL using different

thresholds for the annotation confidence score. The annotations extracted

by ProFAL were compared to annotation manually extracted from the same

documents. The highest recall was 78% obtained with 199 annotations that

achieved 61% precision. The highest precision was 76% obtained with 107

annotations that achieved 55% recall. ProFAL was also able to extract addi-

tional annotations not identified in a previous study on the functional char-

acterisation of the genes in APEG (Becker et al., 2003).
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4.2.3 UniProt

GOA curators use pre-existing uncurated annotations as a guide in their

manually annotation process. These uncurated annotations can also be used

to direct text-mining tools (Camon et al., 2004). Since GOA curators pri-

marily require high precision in a text-mining solution, it is expected that the

information from the uncurated annotations will support this goal without

going through the complex issues of creating rules and patterns encompass-

ing all possible cases, or creating training sets that are too specific. This

Section illustrates how ProFAL was integrated in the GOA database cura-

tion process through GOAnnotator, a tool for assisting the GO annotation

of UniProt proteins (Couto and Silva, 2005).

Interface

GOAnnotator uses ProFAL to link the GO terms present in the uncurated

annotations with evidence text automatically extracted from the documents

linked to UniProt proteins. GOAnnotator is available on the Web1.

GOAnnotator aims at assisting the GO annotation of UniProt proteins

by linking the GO terms present in the uncurated annotations with evidence

text automatically extracted from the documents linked to UniProt proteins.

Initially, the curator provides a UniProt accession number to GOAnnotator.

GOAnnotator follows the bibliographic links found in the UniProt database

and retrieves the documents. Additional documents are retrieved from the

GeneRIF database (Mitchell et al., 2003). Curators can also provide any

other text for mining. GOAnnotator then extracts from the documents GO

terms similar to the GO terms present in the uncurated annotations. GO

terms are similar if they are in the same lineage or if they share a common

1http://xldb.fc.ul.pt/rebil/tools/goa/
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Figure 4.6: Some of the documents retrieved for the protein Ras GTPase-activating pro-
tein 4. The documents are sorted by the most similar term extracted from
their text. The curator can use the Extract option to see the extracted terms
together with the evidence text. By default, GOAnnotator only uses the ab-
stract, but the curator can use the AddText option to replace or insert text.

parent in the GO hierarchy. A semantic similarity measure is used to deter-

mine the degree of similarity between two GO terms (see Appendix B). The

extraction of GO terms is done by FiGO, which assigns a confidence value

to each GO term that represents the terms’ likelihood of being mentioned in

the text (see Chapter 6).

GOAnnotator ranks the documents based on the extracted GO terms

from the text and their similarity to the GO terms present in the uncurated

annotations. Figure 4.6 shows the list of documents related to the protein Ras

GTPase-activating protein 4 provided by GOAnnotator. The list is sorted

by the similarity of the most similar term extracted from each document.

The curator can invoke the links in the Extract column to see the extracted

terms together with the evidence text. By default, GOAnnotator only uses

the abstracts of scientific documents, but the curator can replace or add text
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Figure 4.7: For each uncurated annotation, GOAnnotator shows the similar GO terms
extracted from a sentence of the selected document. If any of the sentences
provides correct evidence for the uncurated annotation, or if the evidence
supports a GO term similar to that present in the uncurated annotation, the
curator can use the Add option to store the annotation together with the
document reference, the evidence codes and any comments.

(links in the AddText column). Any extracted GO term is an indication for

the topic of the document, which is also taken from the UniProt entry.

GOAnnotator displays a table for each uncurated annotation with the

GO terms that were extracted from a document and found similar to the

GO term present in the uncurated annotation (see Figure 4.7). For each

uncurated annotation, GOAnnotator shows the similar GO terms extracted

from a sentence of the selected document. If any of the sentences provides

correct evidence for the uncurated annotation, or if the evidence supports a

GO term similar to that present in the uncurated annotation, the curator

can use the Add option to store the annotation together with the document

reference, the evidence codes and additional comments. The sentences from

which the GO terms were extracted are also displayed. Words that have

contributed to the extraction of the GO terms are highlighted. GOAnno-
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GO Aspect GO Terms
molecular function 54
biological process 18

cellular component 6
total 78

Table 4.1: Distribution of the GO terms from the selected uncurated annotations through
the different aspects of GO.

Evidence Evaluation Extracted Annotations
correct 83

incorrect 6
total 89

Table 4.2: Evaluation of the evidence text substantiating uncurated annotations provided
by GOAnnotator.

GO Terms Extracted Annotations
exact 65

same lineage 15
different lineage 3

total 83

Table 4.3: Comparison between the extracted GO terms with correct evidence text and
the GO terms from the uncurated annotations.

tator gives the curators the opportunity to manipulate the confidence and

similarity thresholds to modify the number of predictions.

Results

From the set of UniProt/SwissProt proteins with uncurated annotations and

without manual annotations, GOAnnotator identified evidence texts with

more than 40% similarity and 50% confidence for 66 proteins. For 80 un-

curated annotations to these proteins, GOAnnotator extracted 89 similar

annotations and their evidence text from 118 MEDLINE abstracts. The

80 uncurated annotations included 78 terms from different aspects of GO

(see Table 4.1). After analysing the 89 evidence texts, GOA curators found
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that 83 were valid to substantiate 77 distinct uncurated annotations (see

Table 4.2), i.e. 93% precision.

In most cases, where the evidence text was correct, the GO term present

in the extracted annotation was the same as the GO term present in the

uncurated annotation (65 cases, see Table 4.3). Although the evidence text

being correct, most of the times it did not exactly contain any of the known

representations of the extracted GO term. In the other cases the extracted

GO term was similar: in 15 cases the extracted GO term was in the same

lineage of the GO term in the uncurated annotation; in 3 cases the extracted

GO term was in a different lineage, but both terms were similar (share a

parent).

In general, we can expect GOAnnotator to confirm the uncurated anno-

tation using the findings from the BioLiterature, but it is obvious as well that

GOAnnotator can propose new GO terms. In both cases, the curator profits

from the integration of both approaches into a single interface. By compar-

ing both results, the curator gets convenient support to take a decision for a

curation item based on the evidence from the different data resources.

GOAnnotator ensures high accuracy, since all GO terms that did not have

similar GO terms in the uncurated annotations were rejected. This meets the

GOA team’s need for tools with high precision in preference to those with

high recall, and explains the strong restriction for the similarity of two GO

terms: only those that were from the same lineage or had a shared parent

were accepted. Thus, GOAnnotator not only predicted the exact uncurated

annotation but also more specific GO annotations of strong interest to the

curators. GOAnnotator takes advantage of uncurated annotations to avoid

general terms by only extracting similar terms, i.e. popular proteins tend
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to be annotated to specific terms and therefore GOAnnotator will extract

specific annotations to them.

Examples

GOAnnotator provided correct evidence for the uncurated annotation of the

protein Human Complement factor B precursor (P00751) with the term com-

plement activation, alternative pathway (GO:0006957). The evidence is the

following sentence from the document with the PubMed identifier 8225386:

The human complement factor B is a centrally important com-

ponent of the alternative pathway activation of the complement

system.

GOAnnotator provided a correct evidence for the uncurated annotation

of the protein U4/U6 small nuclear ribonucleoprotein Prp3 (O43395) with

the term nuclear mRNA splicing, via spliceosome (GO:0000398). From the

evidence, the tool extracted the child term regulation of nuclear mRNA splic-

ing, via spliceosome (GO:0048024). The evidence is the following sentence

from the document with the PubMed identifier 9328476:

Nuclear RNA splicing occurs in an RNA-protein complex, termed

the spliceosome.

However, this sentence does not provide enough evidence on its own, the

curator had to analyse other parts of the document to draw a conclusion.

GOAnnotator provided a correct evidence for the uncurated annotation

of the protein Agmatinase (Q9BSE5) with the term agmatinase activity

(GO:0008783). From the evidence, the tool extracted the term arginase activ-

ity (GO:0004053) that shares a common parent. The evidence was provided
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by the following sentence from the document with the PubMed identifier

11804860:

Residues required for binding of Mn(2+) at the active site in bac-

terial agmatinase and other members of the arginase superfamily

are fully conserved in human agmatinase.

Although, the annotation only received a NAS (Non-traceable author state-

ment) evidence code, as the sentence does not provide direct experimental

evidence of arginase activity. Papers containing direct experimental evidence

for the function/subcellular location of a protein are more valuable to GO

curators.

GOAnnotator provided a correct evidence for the uncurated annotation

of the protein 3’-5’ exonuclease ERI1 (Q8IV48) with the term exonuclease

activity (GO:0004527). The evidence is the following sentence from the doc-

ument with the PubMed identifier 14536070:

Using RNA affinity purification, we identified a second protein,

designated 3’hExo, which contains a SAP and a 3’ exonuclease

domain and binds the same sequence.

However, the term exonuclease activity is too high level, and a more precise

annotation should be 3’-5’ exonuclease activity (GO:0008408).

4.3 Conclusions

ProFAL was not designed to replace human curation, it only aims at assist-

ing the curation process by reducing the amount of information that curators

have to verify. The experiments described in this Chapter have shown that
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ProFAL is useful in the process of gene annotation by providing a user-

friendly interface that allowed fast verification of existing and novel anno-

tations from evidence texts. More than facts, researchers need the source

from which the facts derive. ProFAL provides not only facts but also their

evidence, which curators found to be helpful to reduce their workload.

The evidence text taken from the abstract of a document is sometimes

not enough to evaluate an annotation with a strong confidence. In addition

to annotations, the curator needs additional information, such as the kind

of experiments applied and the species from which the gene originates. Un-

fortunately, quite often this information is only available in the full-text of

the scientific document, and ProFAL only retrieves the abstracts automati-

cally, not the full-texts. Additionally, the list of documents cited in external

sources is not enough for the curation process. In most cases, the curators

found additional sources of information in PubMed. In the future, ProFAL

should automatically query PubMed using the gene’s names to provide a

more complete list of documents.

ProFAL obtained the lowest performance in CAZy since its evaluation

was performed at an early prototype stage. Since then, ProFAL increased

its performance, as it is shown by the results obtained with APEG and

UniProt. ProFAL reached 93% precision in UniProt, meeting the expecta-

tions of typical curators. More experiments are needed to obtain a complete

demonstration of ProFAL’s usability, but persuading curators to use a tool

and provide some feedback is a non-trivial task. Nevertheless, the results

clearly show that it is feasible to develop an efficient system incorporating

methods based on the approach proposed by this thesis.

The observation of curators using ProFAL, in as realistic a situation as

possible, was important to discover imperfections in the proposed methods
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and to identify areas of improvement. Thus, besides demonstrating the fea-

sibility of the proposed approach, the use of ProFAL also demonstrated the

applicability of the proposed methods. The next three Chapters detail the

methods that implemented each processing step of ProFAL.
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5
Retrieval: WeBTC

The classification of BioLiterature is an important recent research topic, mo-

tivated by the large number of biological documents that curators have to

read to update biological databases, or simply to be aware of progress in

a specific area. Text classification applied to BioLiterature can minimize

this effort by automatically selecting the relevant documents to a given task.

Text classification systems are primarily designed to assign categories to doc-

uments to support information retrieval, or to provide an aid to human in-

dexers in the assignment task. In the simplest form, binary classification, the

system decides the relevant and irrelevant documents (or passages) from large

corpora (Salton, 1989). Most text classification systems use the case-based

approach (see Chapter 3). These systems require a training set of docu-

ments to build a statistical model, which is later applied to classify other

documents. The differences among these systems differ are on the way they

create the statistical representation of each document, and in the method

used to create the classification model.

A successful system requires features in the document representation pro-

viding relevant information to the classification method (e.g., the relevant

terms occurring in the documents). Since appropriate features are not al-

ways available, a common approach is constructing new ones, for instance,

by combining old features in an efficient way (Pagallo and Hassler, 1990). An-
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other common approach is to use domain specific knowledge to improve clas-

sification in restricted application domains. This Chapter presents WeBTC

(Web Biological Text Classification), a new method for classifying biological

text that generates new features from external data sources. WeBTC inte-

grates the text with domain knowledge automatically extracted from biolog-

ical Web resources, which are the source of new features. These new features

are integrated in the document representation to improve the performance of

classification methods. Given a collection of documents, WeBTC produces

a richer representation of each document, based on related information ex-

tracted from external sources. If this information is valuable, classification

will achieve a higher accuracy than simply using the text from the document.

The rest of this Chapter describes WeBTC, its experimental evaluation,

the results obtained and analyses and discusses its performance.

5.1 Method

WeBTC relies on biological results stored in public databases available on the

Web. It is motivated by the observation that most authors of recently pub-

lished biomedical documents also submit their results to public databases.

Therefore, these databases usually have their data associated with biblio-

graphic information, which provides an important source for document clas-

sification. Since this information is stored in a structured form, it can be

easily used in an automated system.

Input:

• A collection of documents with its content and its meta-data (e.g. title,

authors, accession number in a bibliographic database);
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• A biological database where information about the documents can be

found.

Output:

• A statistical representation for the documents, where each document

is represented by the number of occurrences of each term found in the

database.

Procedure:

1. For each document, WeBTC identifies all the related database accession

numbers. This information can be extracted by three different ways:

(a) Directly from the document content. Most authors present acces-

sion numbers in their documents, referencing the database where

their results were submitted. It is not hard to find an accession

number in the text, since they have a common format dependent

on the database, e.g. two letters followed by 6 digits. More-

over, sentences with an accession number usually also reference

the database common name.

(b) When the authors of a published document submit their results

to a database, they often include the document identification. In

this case, WeBTC only has to identify the database entries that

cite the document, which is possible if the entered bibliographic

information can be searched.

(c) When a database entry has no bibliographic information but men-

tions its source indirectly (e.g. the authors, the date, the labo-

ratory, the technique), WeBTC matches these data against the
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document’s meta-data to infer that the document represents the

information source of the database entry.

2. WeBTC retrieves the content of the database entries, and identifies the

number of distinct terms mentioned on them.

3. For each document, WeBTC computes the occurrences of each term in

its associated database entries.

Example

The document available in PubMed with the identifier 12803610, contains

the following sentence:

The sequence of the nramp cDNA was filed at the

EMBL-Bank/GenBank/DDBJ Databases under the accession num-

ber AJ514946.

For this document, WeBTC’s step 1 extracts the accession number AJ514946

whose entry is available in the database GenBank. Besides other terms, this

GenBank entry contains the term Hordeum vulgare subsp. vulgare, which is

the name of the organism. Step 2 identifies this term, and step 3 counts at

least one occurrence of the term. Therefore, the WeBTC output will contain

a representation of the document where the feature representing the term

Hordeum vulgare subsp. vulgare has at least one occurrence.

5.2 Assessment

WeBTC was experimentally evaluated for classifying biomedical documents

on the BioText Task of KDD2002 Cup (Yeh et al., 2002). The task consisted

on identifying which biomedical documents contained relevant experimental
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results, and which were the gene products (transcripts and proteins) involved.

This represents one stage of the curation process in FlyBase. FlyBase is a

comprehensive database for information on the genetics and molecular bi-

ology of Drosophila (fruit fly). The curators take a set of documents and

extract new relevant information reported on them. New relevant informa-

tion means experimental results applicable to wild-type (non-mutated) fruit

flies, which are not just merely citations of other documents. The complete

curation process of FlyBase is a typical case of application of ProFAL, and

the BioText Task of KDD2002 Cup represents the retrieval step of ProFAL.

The evaluation environment included a collection of documents about

Drosophila genetics or molecular biology. For each document, the full content

was provided as a raw text file, along with an XML template containing its

identifiers and the list of the genes mentioned in it. The gene’s names follow

a standardised nomenclature, and a synonym list for each gene was provided.

Other collections of data from biological databases publicly available on the

Web could also be used, to better mimic real conditions.

Each participant had to submit the following items:

• For each document, a Boolean decision on whether there are relevant

experimental results reported on it.

• For each document assumed to have relevant experimental results, the

genes involved and the gene-product type (transcript, protein, or both).

• A ranked list of documents, sorted by the assurance degree of having

relevant experimental results. The documents more likely to contain

experimental results should be ranked higher than the documents with

no experimental results.

Each output item was considered a sub-task that was evaluated sepa-
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rately. The collection of documents was divided in two sets: the training

set with 862 documents and the test set, with 213 documents. The training

set was made available 6 weeks before the test set, and it was available for

2 weeks until the submission deadline. The expected output for each docu-

ment in the training set was provided. Only 283 documents of the training

set reported relevant experimental results. The output of these documents

was extended with result evidences.

5.2.1 Setup

The implementation of WeBTC in this evaluation environment involved the

retrieval of the meta-data of each document through its PubMed identifier.

These identifiers were provided for each document. WeBTC used the follow-

ing external biological databases:

MeSH: a collection of keywords for classifying documents;

GenBank: a repository of gene structure data.

The first step of WeBTC procedure, which associates each document with

the MeSH terms, can be skipped, since PubMed already manually classifies

each document with a set of MeSH terms. WeBTC retrieved the GenBank

accession numbers in the documents’ text and through the citations. The

third approach was not implemented, i.e. WeBTC did not use the documents’

meta-data to retrieve accession numbers. WeBTC was executed with MeSH

terms and with the gene and protein information retrieved from GenBank.

The result was three different statistical representations of each document.

Their features were combined to integrate these representations into a single

one, named WeBTC representation.
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Bag-of-words WeBTC Combined
TruePositives 41 19 15
FalsePositives 19 2 0
TrueNegatives 103 120 122
FalseNegatives 50 72 76

Table 5.1: Results achieved by WeBTC and the Bag-of-Words and Combined approaches.

A model was built from the WeBTC representations and another model

from the bag-of-words representations. A combined model was implemented

that only considers a document relevant if both models agree in doing so. The

bag-of-words representation of each document was created by Bow, a toolkit

for statistical language modelling, text retrieval, classification and cluster-

ing (McCallum, 1996). The stemming algorithm available in Bow increased

the features quality in both WeBTC and bag-of-words representations. Given

the statistical representations of each document, Bow built the models using

the Näıve Bayes statistical classification method.

5.2.2 Results

WeBTC vs. Standard Approach

Table 5.1 presents the results obtained by the three models that predicted

the classification of the 213 documents in the test set. TruePositives are

the number of documents that a model correctly predicted to be relevant.

TrueNegatives are the number of documents that a model correctly predicted

to be irrelevant. FalsePositives are the number of documents that a model

incorrectly predicted to be relevant. FalseNegatives are the number of doc-

uments that a model incorrectly predicted to be irrelevant.

Figure 5.1 compares the precision and recall obtained by the three models.

Results show that WeBTC achieved a significantly higher precision. The
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Figure 5.1: Precision achieved by WeBTC and the Bag-of-Words and Combined ap-
proaches.
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Figure 5.2: Scoring Results of the BioText Task of KDD2002 Cup.
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combined model achieved 100% precision, however at the cost of a decrease

in recall.

WeBTC vs. State-of-the-art Approaches

Since the combined model achieved a better performance, it was submitted

to the BioText Task of KDD2002 Cup. The results of 32 state-of-the-art

systems were provided by the BioText Task of KDD2002 Cup organisation

committee, which applied a scoring method to evaluate each of the sub-

tasks. They scored the ranked list by the ROC curve (Bradley, 1997), the

document decision and the gene-product decision by the standard F-measure.

The overall score was obtained by the sum of these three scores, normalised

to a 0% to 100% range representing the efficiency of the systems.

Figure 5.2 shows the results for the three sub-tasks and the overall score.

The Best values represent the highest score, which in this case was always

obtained by the same team. The 1Q values represent the score limit of the

first quartile (Kenney and Keeping, 1962), i.e. the ninth highest score in this

contest. The Median values represent the arithmetic average of all scores.

The Low values represent the lowest score obtained. The WeBTC values

represent the scores obtained by using WeBTC. The overall score of WeBTC

was in the first quartile in two sub-tasks. The exception was in the document

decision sub-task, where the score was even lower than the median. In this

sub-task, WeBTC achieved a precision of 81% but a recall of only 38%.

5.3 Discussion

The main problem of WeBTC was the low recall. This happened because it

was not able to retrieve information for all documents because of the small

81



number of external biological sources used. The period of time to implement

WeBTC was small, otherwise WeBTC would have retrieved more informa-

tion, since the databases would be more complete and more resources could

be covered. Results obtained with information retrieved after the BioText

Task of KDD2002 Cup deadline would have had a larger recall. This would

not have constituted a fair evaluation, since database curators in real situ-

ations have also a deadline to classify documents. Thus, WeBTC needs to

cover in due time a broader range of resources. On the other hand, for the

documents with information available, WeBTC provided an accurate pre-

diction, reaching 100% precision. The high levels of precision are useful for

database curators, since they do not have to manually verify predictions of

relevant documents.

The ClearForest and Celera team developed the winning system of the

BioText Task of KDD2002 Cup (Regev et al., 2002). Their system was imple-

mented through a rule-based approach (see Chapter 3). The rules were built

specifically for the task with basis on domain knowledge, and were essen-

tially sequences of terms to use in pattern matching. A team from Singapore

obtained an honourable mention by developing a system based on feature ex-

tracting with a Näıve Bayes Classifier (Keerthi et al., 2002). However, their

feature extraction was based on a set of keywords manually extracted from

the training texts and on manual selection of positive examples. Another

honourable mention was given to a team from UK (Ghanem et al., 2002).

Their system was also based on feature selection and on statistical classifi-

cation methods, but feature selection was also based on relevant keywords

supplied by local domain experts.

All the systems described above use domain knowledge as a crucial com-

ponent of their systems. The main conclusion retained from the BioText
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Task of KDD2002 Cup was that statistical text classification systems reason-

ing without considering domain knowledge achieved poor results. WeBTC

attempted to obtain domain-specific knowledge through information auto-

matically extracted from external biological sources available on the Web.

Its implementation, at an early prototypical stage, performed close to the

best submissions, which were more mature and resorted to manually inserted

domain knowledge.

5.4 Conclusions

This Chapter presented a novel approach for text classification involving au-

tomatic integration of extracted information from biological Web resources

with common statistical text classification methods. WeBTC was developed

based on this approach, and it was able to significantly increase the preci-

sion (reaching 100%) relative to standard classification methods. However,

it obtained low levels of recall, because of the small number of documents

for which information in the external databases was found. If more informa-

tion had been retrieved, WeBTC would have achieved higher levels of recall

maintaining its remarkable levels of precision.

The performance of WeBTC was also evaluated in the BioText Task of

KDD2002 Cup versus state-of-the-art systems. Besides being developed in a

early stage of this thesis, WeBTC achieved results close to well-established

approaches using manually inserted domain knowledge. This substantiates

the hypothesis of this thesis by showing that domain knowledge automatically

acquired from external sources represents an efficient alternative to domain

knowledge explicitly created by experts.

An annotation tool, such as ProFAL, can only perform well when it is
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using the correct documents. WeBTC aims at selecting relevant documents

from a large collection and therefore implements the first processing step of

ProFAL. Finding the right documents is a crucial and time-consuming task.

Therefore, an efficient text classification method, such as WeBTC, reduces

both the time spend by curators and improves the performance of annotation

methods, such as FiGO described in the following Chapter.
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6
Extraction: FiGO

Text-mining systems for gene annotation are becoming an important tool for

the development and curation of microarray, mass spectrometry and other

biological databases. As an example, the GOA (Gene Ontology Annota-

tion) project aims at identifying GO annotations to supplement the UniProt

knowledgebase (Camon et al., 2004). They provide high-quality manual GO

annotations, but manual curation is a time-consuming task that currently

covers less than 5% of UniProt. Thus, the GOA database coverage mainly

consists of uncurated annotations that are automatically generated and have

a lower quality than manual annotations. Besides identifying novel annota-

tions, text-mining systems can also be used to support the curation process

by identifying evidence texts that substantiate the uncurated annotations.

This Chapter proposes FiGO (Finding Genomic Ontology), a novel un-

supervised method to identify biological terms organised in a BioOntology

in unstructured text. The method follows the approach proposed by this

thesis, since it does not require any rules or training sets written by the user.

It automatically acquires the domain knowledge from the nomenclature of

a given BioOntology, by using the frequency of each word present in the

nomenclature to calculate its relevance.

The rest of this Chapter describes FiGO, its implementation details, and

presents and discusses the results achieved.
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6.1 Method

FiGO assumes that the evidence content of a word measures its importance

to identify a term in text. The evidence content is inversely proportional to

the number of times the word appears in the names of all terms. The notion

of evidence content derives from the definition of information content used

by Resnik (1995). For instance, consider the GO term punt binding. If only

the word binding is present in the text, the probability of the GO term being

referenced is low, because binding is used in many other names. On the other

hand, if only the word punt is present, then there is strong evidence that the

GO term is mentioned in the text because this word is not part of any other

name.

FiGO receives i) a BioOntology, Ont, and ii) a piece of text, Txt, as input.

Each entry in Ont represents a biological term that can be assigned to genes.

The output is the list of terms that FiGO detected in the given text. FiGO

returns these terms ranked according to how strong is the evidence found

in the text. For example, Ont can be the GO with each biological term

representing a GO term, and Txt can be a sentence taken from a document.

The Words

FiGO derives a map between the terms and their names:

Names(term) = {n0, . . . , nk}, (6.1)

where term ∈ Ont and n0, . . . , nk are its name and synonyms in the BioOntol-

ogy. If term does not have synonyms, then k = 0 and Names(term) = {n0}.
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The set of words that compose a name n is given by:

Words(n) = {w0, . . . , wl}. (6.2)

In addition, the set of words contained in a term term is:

Words(term) = {w ∈ Words(n) : n ∈ Names(term)}. (6.3)

Furthermore, the words of the BioOntology are

Words(Ont) = {w ∈ Words(term) : term ∈ Ont}. (6.4)

Evidence Content

The evidence content of each word decreases with its frequency. The fre-

quency of a word w is the number of terms that contain the word:

Freq(w) = #{term ∈ Ont : w ∈ Words(term)}. (6.5)

A word present in only one name has high evidence content. The maxi-

mum frequency is defined using the following equation:

MaxFreq = max{Freq(w) : w ∈ Words(Ont)}. (6.6)

WordEC(w), the evidence content of a word w, is defined using the

following equation:

WordEC(w) = − log(
Freq(w)

MaxFreq
). (6.7)

Since each name is composed of a set of words, the evidence content of a
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name n is the sum of the evidence content of its words:

NameEC(n) =
∑

w∈Words(n)

WordEC(w). (6.8)

The evidence content of a term term is defined as the highest evidence

content of all its names:

EC(term) = max{NameEC(n) : n ∈ Names(term)}. (6.9)

Local Evidence Content

The input text is modelled as set of words:

Txt = {w0, . . . , wl}. (6.10)

The local evidence content (LEC) measures how much of the name n is

mentioned in the text Txt. LEC is the sum of the evidence content of those

words, which are present in the text as well as in the name:

NameLEC(n, Txt) =
∑

w∈(Txt∩Words(n))

WordEC(w). (6.11)

The LEC also measures how much the term term is mentioned in the

text Txt:

LEC(term, Txt) = max{NameLEC(n, Txt) : n ∈ Names(term)}. (6.12)

The LEC divided by the EC is a confidence level for the term term
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occurring in the Txt:

Conf(term, Txt) =
LEC(term, Txt)

EC(term)
. (6.13)

Conf(term, Txt) ∈ [0, 1], since LEC is smaller than EC by definition.

If the confidence level is larger than a given threshold α ∈ [0, 1], then

term is considered to occur in Txt:

Conf(term, Txt) ≥ α. (6.14)

If α = 1, the complete name has to appear in the text to be selected.

Thus, the α parameter is used to tune recall and precision of FiGO. An in-

crease in α increases precision, a decrease in α increases recall. Conf(term, Txt)

is used to rank the returned terms, and represents the evidence strength found

in the text for each biological term.

Example

Given a term t with:

Names(t) = {punt binding, punt function},

Freq(punt) = 1,

Freq(binding) = 4,

Freq(function) = 8,

MaxFreq = 16.

Then, we have:

WordEC(punt) = −log(1/16) = 4,

WordEC(binding) = −log(4/16) = 2,

WordEC(function) = −log(8/16) = 1,
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WordEC(punt binding) = 4 + 2 = 6,

WordEC(punt function) = 4 + 1 = 5,

EC(t) = max{6, 5} = 6.

Consider the following pieces of text:

Txt1 =The protein has a binding activity,

Txt2 =The protein has a punt activity,

Txt3 =The protein has a punt binding activity.

Since we have:

LEC(t, Txt1) = 2,

LEC(t, Txt2) = 4,

LEC(t, Txt3) = 6,

then we have:

Conf(t, Txt1) = 1/3,

Conf(t, Txt2) = 2/3,

Conf(term, Txt3) = 1,

which means that FiGO will decide that t occurs in:

Txt1 when α ≤ 1/3,

Txt2 when α ≤ 2/3,

Txt3 when α ≤ 1.

The cases of Txt1 and Txt2 show how FiGO gives more importance to

rare words to identify the terms in a given text.
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6.2 Assessment

This Section describes the FiGO implementation used when preparing the

submission to BioCreAtIvE tasks 2.1 and 2.2 (Blaschke et al., 2005). Given

a document and a GO annotation, task 2.1 consisted of identifying the text

in the document that provided evidence for the annotation. Given a docu-

ment and the number of GO annotations to find for each GO class, task 2.2

consisted of identifying the GO annotations and extracting an evidence text

for each of them from the document.

GO pre-processing

FiGO used the GO BioOntology, considering its terms as the terms to iden-

tify. FiGO identified the set Words(GO), and removed from this set all the

stop words, such as in or on. FiGO then computed the evidence content

of each word, name, and finally of each term. FiGO also computed the an-

notation frequency of each GO term as the number of times the term and

its descendants in the GO hierarchy were annotated in GOA. The most fre-

quently annotated terms represent general GO terms, such as protein, and

binding. These terms were discarded in the extraction of annotations from

text.

The Text

FiGO parsed the file given for each document and structured the text in sen-

tences. Each sentence represented a piece of text from where FiGO identified

GO terms.

In task 2.1, the submitted sentences were the ones in the ranked list re-

turned by FiGO for the given term. In the case of having multiple sentences,
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Figure 6.1: These charts compare the quality of the predictions returned by FiGO with
all the other submissions to BioCreAtIvE tasks 2.1 and 2.2. For each submis-
sion, the charts show the precision versus the number of perfect predictions
identified. The precision is the number of perfect predictions over the number
of predictions submitted.

the submitted sentence was the one with the highest rank and mentioning

the protein. In the case of not having any sentence, the submitted sentence

was the one returned by FiGO for the most similar term. The similarity be-

tween terms was calculated using the semantic similarity measure proposed

by Lin (see Appendix B). In this task, FiGO was executed three times with

α assigned to 0.3, 0.7 and 0.9, resulting in three different submissions.

In task 2.2, the submitted sentences were the ones in the ranked list

returned by FiGO that mentioned the protein. Then, generic terms were

discarded by only submitting the sentences containing the rarest annotated

terms. In this task, FiGO was executed three times with the α assigned to

0.5, 0.7 and 0.9, resulting in three different submissions.

A näıve method based on exact matching identified the proteins in the

text. The method consider that a sentence mentions a protein if it contains

all the words of its name or synonym. The name and synonyms of each

protein were collected from the UniProt database.
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Figure 6.2: A prediction was considered perfect when it provided high evidence of both
GO term and protein. Thus, a prediction could provide high evidence of the
GO term without being perfect. These charts disregard the protein evaluation
and show the number of predictions submitted by FiGO to BioCreAtIvE tasks
2.1 and 2.2, which provided a high, generally and low evidence of the GO term
for each value of α used.
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Figure 6.3: For each aspect of the GO hierarchy, these charts compare the performance
of the three submissions of FiGO to BioCreAtIvE tasks 2.1 and 2.2. For
each aspect, the charts show the precision versus the number of correct GO
predictions identified by each submission. The precision is the number of
correct GO predictions over the number of predictions submitted. In task 2.2,
raising α increases precision in all aspects, while in task 2.1 has the opposite
effect.

6.2.1 Results

In the BioCreAtIvE task 2, each submitted prediction had a GO term and a

protein evaluation. Both evaluations assigned a high, generally or low score

to the prediction. High score means that the predicted evidence supports

a correct GO term or protein. A generally score means that the predicted
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evidence supports a related GO term or protein. Low score means that

the predicted evidence does not support a correct GO term or protein. A

prediction was considered perfect when both the GO and protein evaluation

assigned a high score to it.

Figure 6.1 shows the performance of FiGO in tasks 2.1 and 2.2. It com-

pares its precision and number of perfect predictions with all the other sub-

missions. For each submission, the charts show the precision versus the num-

ber of perfect predictions identified. The precision is the number of perfect

predictions over the number of predictions submitted.

In task 2.1, the best performance of FiGO was obtained using α = 0.3,

which achieved a large number of perfect predictions and a precision of al-

most 30%. On the other hand, in task 2.2 the best performance of FiGO

was obtained using α = 0.9, which achieved a significant number of perfect

predictions and precision of almost 10%.

A prediction was considered perfect when it provided high evidence of

both the GO term and associated protein. Thus, a prediction could provide

high evidence of the GO term without being perfect. Figure 6.2 shows the

GO evaluation of FiGO predictions for the values of α used in tasks 2.1 and

2.2. The charts disregard the protein evaluation and show the number of

predictions submitted by FiGO to BioCreAtIvE tasks 2.1 and 2.2, which

provided a high, generally and low evidence of the GO term for each value of

α used. The manipulation of the α parameter had a different effect on each

task. In task 2.1, FiGO obtained better results using a smaller α value. On

the other hand, in task 2.2 the increase of α implied a better performance of

FiGO.

Figure 6.3 compares the performance of FiGO in each aspect of GO.

For each aspect of the GO hierarchy, the charts compare the performance
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of the three submissions of FiGO to BioCreAtIvE tasks 2.1 and 2.2. For

each aspect, the charts show the precision versus the number of correct GO

predictions identified by each submission. The precision is the number of

correct GO predictions over the number of predictions submitted. In this

Figure, a prediction was considered a correct GO prediction when the GO

evaluation assigned a high score to it. In task 2.1, the best performance of

FiGO was in the biological process aspect. On the other hand, in task 2.2

the best performance of FiGO was in the molecular function aspect.

6.3 Discussion

FiGO achieved a good performance when compared with the other submis-

sions. In both tasks, FiGO almost defined the highest number of correct

predictions, but its precision was far from the best results. However, the

submissions with higher precision were composed by fewer predictions than

requested. FiGO chose to always submit the requested number of predictions,

even when they had a low confidence score.

Since the core of FiGO was the identification of GO terms, a significant

part of the predictions was not considered perfect just because of the pro-

tein evaluation. For example, in task 2.1 with α = 0.3, the GO evaluation

assigned a high score to 479 predictions (see Figure 6.2). However, only 301

of them were considered perfect (see Figure 6.1). This means that 178 out

of 479 predictions (37.2%) were not considered perfect because they did not

provide high evidence of the protein. In addition to this major problem,

FiGO also had the following limitations:

1. in task 2.1, it predicted about 20 obsolete GO terms;
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2. it did not filter the GO terms that could not be annotated with Human

proteins (e.g. germination);

3. it selected sentences from irrelevant Sections (e.g. Material and Meth-

ods);

4. sometimes just one sentence is not enough to support an annotation.

For instance, the protein and the term are sometimes in the same para-

graph, but not in the same sentence;

5. it did not account for the number of times a term occurs in the text;

6. it did not account for the word order in the name;

7. in task 2.2, it predicted GO terms out of context.

The first two limitations could be easily solved before BioCreAtIvE, but

they were not identified before the submission. On the other hand, the last

five limitations represent important topics of research that deserve further

study. The performance in task 2.2 was lower than in task 2.1 mainly be-

cause of the last problem on the list. To discard terms out of context more

domain knowledge about the proteins and the documents would be useful.

An effective approach would be the integration of domain knowledge from

publicly available resources.

In task 2.1, the GO terms with higher precision occurred in the BioLite-

rature exactly as described in GO, such as cell proliferation. This particular

GO term had the highest precision with 11 high and 1 low scores assigned.

The GO terms with lower precision were the ones whose name was composed

by words with low evidence content, such as regulation of transcription. This

particular GO term had the lowest precision with 1 high and 8 low scores

assigned.
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In task 2.2, the GO terms with higher precision were generic terms, such

as binding, and those whose name had high evidence content, such as galac-

tose 3-O-sulfotransferase activity. This last GO term had the second highest

precision with 4 high and 2 low scores assigned. The GO term binding had

the highest precision with 20 high and 3 low scores assigned. The GO terms

with lower precision were the ones whose name was composed by words with

low evidence content or multiple meanings, such as receptor activity. This

particular GO term had the lowest precision with 1 high and 8 low scores as-

signed, because activity has low evidence content and receptor can be used to

mention other protein. For example, in UniProt there are more than 20,000

proteins whose name contains the word receptor.

Figure 6.3 shows that in task 2.1 it was easier to find evidence for GO

terms in the biologic process aspect. This can be explained because these

terms use specific names. On the other hand, the same Figure shows that

in task 2.2 it was easier to predict terms in the molecular function aspect.

This can be explained because normally there are more occurrences of these

terms in the documents.

The reason for having better results using a smaller α value in task 2.1

is that there were a large number of terms not explicitly mentioned in the

text. Some sentences were correctly selected when only less than 70% of the

term’s name appeared in text. On the other hand, for smaller values of α,

FiGO identified more terms out of context. Thus, in task 2.2, the selection

of terms with a larger α turned up to be an effective approach to predict

which relevant terms were mentioned.
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6.4 Conclusions

This Chapter presented FiGO, a novel unsupervised method for recognizing

biological terms in unstructured text, involving the evidence content of their

names. FiGO does not require training data, since it computes the evidence

content based on the nomenclature of a BioOntology that structures the

terms. Therefore, the use of FiGO represents minimal human intervention.

FiGO was designed for recognizing terms, not for extracting annotations.

However, it has still obtained a good performance in BioCreAtIvE when

compared with other submissions. The evaluation raised a set of problems

that should be addressed in further developments. The main limitation of

FiGO in BioCreAtIvE was in the protein identification, since it used a näıve

method for this task. If a more effective method was used, FiGO would likely

have achieved an even higher performance (Fukuda et al., 1998).

The performance of FiGO demonstrated that it provides an effective

method to recognise terms in BioLiterature and to improve the performance

of automatic annotation systems, such as ProFAL. It also substantiated the

approach proposed by this thesis, since FiGO was able to obtain good results

without resorting to manually inserted domain knowledge.

Despite the good performance of FiGO when compared to other sub-

missions, its accuracy is still not acceptable to curators. This explains the

reluctance of many curators to the use of text-mining tools. Therefore, these

tools would benefit from novel methods that could automatically discard

misannotations, such as CAC, which is described in the next Chapter.
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7
Validation: CAC

The large amount of biological data available nowadays has transformed the

traditional way of conducting research and development in the life sciences.

Traditional functional characterisation of genes and proteins cannot cope

with the large amount of sequences being produced. Therefore, a signifi-

cant number of genes and proteins have been functionally characterised by

automated tools, which extrapolate functional annotations from similar se-

quences. However, these tools have also produced a significant number of

misannotations that are now present in the databases (Devos and Valencia,

2001). Some of these tools have been extrapolating new annotations from

misannotations and are therefore spreading the errors. This happens because

most databases do not distinguish between extrapolated and curated annota-

tions. Functional characterisation is not normally linked to the experimental

evidence that substantiates it, which makes it difficult to judge if it is correct.

Many databases are using GO terms to annotate their proteins. For

example, the GOA (Gene Ontology Annotation) database provides GO an-

notations to supplement the UniProt (Universal Protein Resource) (Camon

et al., 2004). UniProt is a universal repository of protein sequence and func-

tional data (Apweiler et al., 2004). GOA provides high-quality manual GO

annotations, but manual curation is a time-consuming task that currently

covers less than 5% of UniProt. The manual processing capacity for gene and
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protein characterisation is overloaded by the increasingly larger amounts of

literature to analyse. Thus, the GOA database mainly consists of automated

annotations that have a lower quality than manual annotations.

This Chapter proposes a new approach to validate the automated anno-

tations and therefore improve their accuracy. The approach uses the large

amount of publicly available information to compare automated annotations

to preexisting curated annotations. The manual annotation methodology

adopted by curators, who also use preexisting annotations as a guide to

evaluate automated annotations, inspired this approach. The underlying in-

tuition is that automated annotations having similar curated annotations

should also be correct. Similar annotations mean annotations with similar

proteins and similar GO terms. This is supported by the dogma of Molecu-

lar Biology, which postulates that proteins with similar sequence should also

have similar biological activities (Lord et al., 2003a). CAC (Correlate the

Annotations’ Components), was developed based on the proposed approach.

It is a novel heuristic method to discard misannotations identified by auto-

mated systems. CAC requires minimal human intervention, since it takes

advantage of publicly available domain knowledge to score each automated

annotation according to previously curated annotations.

The remainder of this Chapter describes CAC in detail, presents the

experimental evaluation of CAC and discusses the obtained results.

7.1 Method

Algorithm 1 outlines CAC, which assigns a confidence score to apredicted,

an annotation predicted by an automated system given as input. CAC also
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Algorithm 1: CAC

Input: apredicted, an annotation predicted by an automated system;
Acurated, set of previously curated annotations.

Output: confidence ∈ [0, +∞], confidence score of the predicted annota-
tion.

1: confidence(apredicted) = 0
2: (gpredicted, ppredicted) = apredicted

3: Gcurated = {g : ∃p (g, p) ∈ Acurated}
4: for all gcurated ∈ Gcurated do
5: Pcurated = {p : (gcurated, p) ∈ Acurated}
6: geneSim = geneSim(gpredicted, gcurated)
7: propSim =

∑
pcurated∈Pcurated

propSim(ppredicted, pcurated)
8: confidence(apredicted) + = geneSim× propSim
9: end for

10: SG = similarGenes(gpredicted,Gcurated)

11: confidence(apredicted) =
confidence(apredicted)

SG

receives as input Acurated, a set of preexisting curated annotations collected

from public databases, e.g. GOA.

CAC starts by assigning a zero confidence score to the predicted an-

notation (line 1). Next, CAC collects all the genes in the set of curated

annotations (line 3). For each curated gene, CAC collects the properties

annotated to it (line 5). Next, CAC calculates the similarity between the

curated and the predicted genes (line 6), and calculates the similarity be-

tween the predicted property and each property annotated to the curated

gene (line 7). CAC increments the confidence of the predicted annotation

by the product of the gene similarity and the sum of all property similarities

(line 8). Thus, the confidence only increases if both the gene similarity and

at least one property similarity are larger than zero, i.e., if they are similar

genes and have been annotated with at least one similar property.

However, theAcurated set can contain groups of similar genes that are over-

represented. In this case, the predicted annotations that contain genes with
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a large number of similar curated genes will tend to have higher confidence

scores. To overcome this problem, CAC calculates the number of curated

genes similar to the predicted gene (line 10), and employs it as a damping

factor (line 11). This factor reduces the effect of the amount of similar curated

genes in the confidence score calculation.

CAC returns a confidence score of apredicted being correct. To filter the

annotations predicted by an automated system, CAC scores each predicted

annotation and discards those scored below a confidence threshold (CT ).

CAC is able to trade precision against recall by manipulating CT . Raising

CT increases precision and decreases recall, lowering CT has the opposite

effect.

CAC cannot score annotations without similar curated annotations. When

the given predicted annotation has no similar curated genes (SG = 0), CAC

assigns a confidence score of +∞ to it. This means that the predicted anno-

tation will never be filtered independently of the threshold used. Therefore,

CAC does not discard new knowledge; instead, it gives the curators the op-

portunity to manually verify these potentially novel annotations.

Gene Similarity

The most popular way to calculate the similarity between two genes is by

comparing their sequence (Attwood and Parry-Smith, 1999). However, se-

quence similarity is not the only kind of structural similarity that can be

computed between two proteins. Family similarity is also a structural sim-

ilarity of a higher level than sequence similarity. Each family describes a

set of related proteins, which can have identical molecular functions, are in-

volved in the same process, or act in the same cellular location. Classifying

proteins in families has been a common technique to organise them according
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to their biological role. For example, the most successful large-scale effort

for increasing the coverage of GO annotations within the UniProt database

is based on the exploitation of family annotations (Camon et al., 2004). Un-

like standard sequence similarity methods, family categorisation is normally

based on experimental results about protein domains, which represent some

evolutionarily conserved structure and have implications on the protein’s bi-

ological role.

geneSim was implemented as the number of shared Pfam families. Pfam

is a structural classification scheme, which provides a set of protein domains

and families, designed for well-established uses, including genome annotation

(Bateman et al., 2004). The UniProt database provides family assignments,

where each protein is assigned to a set of Pfam families. This implementation

can be improved by taking in account the sequence related to each Pfam fam-

ily. For example, the length of the sequence and the percentage of similarity

may constitute important factors to calculate the geneSim function.

Property Similarity

CAC assumes that two properties are similar if one of them subsumes the

other or if they have a common parent in the functional classification scheme,

e.g. GO. To calculate the degree of similarity between properties, CAC can

use a semantic similarity measure that combines the structure and content

of a BioOntology with statistical information from corpus (Resnik, 1995).

Recent projects investigated the use of semantic similarity measures over

GO (Lord et al., 2003b; Couto et al., 2005b). Their results demonstrated the

feasibility of a semantic similarity measure in a biological setting.

propSim was implemented using the measure proposed by Jiang&Conrath,

which is one of the most efficient semantic similarity measures (Jiang and
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Conrath, 1997; Budanitsky and Hirst, 2001). Jiang&Conrath defined the se-

mantic distance of two concepts in a corpus as the difference between their

information content and the information content of their most informative

common ancestor. The information content of a concept is inversely pro-

portional to its frequency in the corpus. Concepts that are frequent in the

corpus have low information content. For example, the stop words (such as

the) that occur almost everywhere in the text normally provide little seman-

tic information. The information content of a GO term was calculated as

the number of proteins annotated with it. The ancestor of two GO terms

having the largest information content was considered the most informative

common ancestor of both terms.

Example

In the subtask 2.2 of BioCreAtIvE, the participants annotated the protein

Lipid phosphate phosphohydrolase 1 to the GO terms membrane and mRNA

metabolism (Blaschke et al., 2005). However, only the assignment of mem-

brane is correct. Below the results obtained by CAC for these two annota-

tions are described.

The protein Lipid phosphate phosphohydrolase 1 belongs to the PF01569

family. For the annotation of this protein to membrane, CAC found 91 cu-

rated proteins from the PF01569 family (geneSim = 1) that were annotated

to similar GO terms (propSim > 0) in GOA. From these 91 proteins, 21

were annotated to the same term. For example, the protein Lipid phos-

phate phosphohydrolase 2 belongs to the PF01569 family (geneSim = 1)

and is annotated to membrane and integral to membrane, which results in

propSim = 1.445297776. The confidence score resulted from these 91 pro-
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teins is 53.09, but since the PF01569 family contains 630 proteins (SG =

629), CAC returned 53.09
639

≈ 0.08.

On the other hand, for the annotation of the protein Lipid phosphate

phosphohydrolase 1 to mRNA metabolism, CAC only found one curated pro-

tein (HH1165 ) from the PF01569 family (geneSim = 1) that was annotated

to a similar GO term (metabolism) (propSim = 0.1) in GOA. Thus, in this

case CAC returned 0.1
639

≈ 0.0002.

7.2 Assessment

CAC was tested to find how effectively it could discard the misannotations

submitted to BioCreAtIvE independently of their evidence text. CAC scored

each submitted annotation individually (apredicted), using the GOA annota-

tions as the curated set of annotations (Acurated). The annotations submitted

to BioCreAtIvE and the GOA annotations are both publicly available on the

Web12. However, in the publicly available information there is no reference

to the author of each annotation submitted to BioCreAtIvE. It is not even

possible to know which annotations were submitted by the same system.

It was decided not to increase the confidence of a predicted annotation

based on curated annotations to the same protein, i.e., the protein gpredicted

was discarded from Gcurated. This way, CAC was restricted to score each pre-

dicted annotation based only on curated annotations to similar but distinct

proteins. This restriction ensures a fair evaluation of CAC by checking if

CAC copes with proteins having no previously curated annotations.

The restriction increased the number of proteins for which it was not

1http://www.pdg.cnb.uam.es/BioLINK/workshop_BioCreative_04/results/
data/

2ftp://ftp.ebi.ac.uk/pub/databases/GO/goa/UNIPROT/gene_association.goa_
uniprot.gz
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Set #annotations #proteins max(SG) min(SG) SG
Set-1 1135 30 583 5 223.7841
Set-2 1101 25 1762 613 1077.7221
Set-3 1049 22 11605 1855 3098.9790

Table 7.1: Statistics of the three sets of annotations created according to the number of
similar curated proteins per annotation (SG). The statistics include the number
of annotations, the number of distinct predicted proteins, and the maximum,
minimum and average of SG for each set.

possible to obtain similar proteins, i.e., having SG = 0. However, only 455

out of the 3740 predicted annotations did not have a similar protein in the

December 2004 release of GOA. These novel annotations have a precision of

7%, i.e., only 32 of them were correct. The assumption that supports CAC

is not applicable to these novel annotations, thus scoring these annotations

is out of CAC objectives. CAC does not discard these annotations, since it

assigns an infinite score to them. Therefore, in the first part of the evaluation

these annotations were disregarded, but they were included in the end to show

the overall impact of CAC on the curation process.

The 3285 annotations having SG > 0 assign 1239 distinct GO terms to 77

UniProt proteins. The 77 proteins were assigned to 87 distinct Pfam families

with an average of 1.6 families per protein. These 87 families contained 64863

distinct proteins. Thus, each protein had 64863
87

×1.6 = 1192.9 similar curated

proteins on average.

To compare the performance of CAC when applied to over-annotated or

under-annotated proteins, the 3285 annotations were divided in three differ-

ent sets (Set-1, Set-2 and Set-3 ) according to the number of similar curated

proteins (SG). Table 7.1 shows statistical information about each set.
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(c) Precision vs. Recall

Figure 7.1: Accuracy of the annotations retained by different confidence thresholds (CT )
after running CAC. The All Proteins lines represent all the 3285 annotations.
The Set 1 and Set 3 lines represent the annotations with the smallest and
the largest number of similar curated proteins, respectively. The Set-2 lines
represent all the other annotations not present in Set 1 and Set 3. The with-
out CAC baselines represent the original annotations without using CAC. In
chart (a), the baseline shows the F-Measure when none of annotations is fil-
tered. In the other charts, the baselines assume a random model to filter the
annotations, i.e., having a constant precision for any filter rate.

7.2.1 Results

Each distinct confidence score was used as a confidence threshold to obtain

different subsets of the 3285 predicted annotations. For each confidence

threshold, the resulting subset contains all the annotations with a confidence
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score not below the threshold. For a zero confidence threshold, the subset

contains all the predicted annotations, since none of them is discarded. As

the confidence threshold increases, the size of the subset decreases. For each

subset, it was calculated: the precision, representing the fraction of correct

annotations in the subset; the recall, representing the number of correct

annotations in the subset over the number of correct annotations in the

original set; and the F-measure = 2×precision×recall
precision+recall

, representing the trade-off

between precision and recall. Note that if we replace CAC by a random

model to filter the annotations, the precision would remain constant. For

instance, if we select at random 25% of the annotations in the original set, it

is predictable that the selected annotations also contain 25% of the correct

annotations in the original set.

Only 227 out of the 3285 annotations submitted to BioCreAtIvE were

considered correct, a precision of 6.9%. The real recall is unknown, since

the organisation of BioCreAtIvE did not measure it. Thus, we can assume

a recall of 100% for the original set of annotations. Note that CAC cannot

increase recall. As a filter, it does not generate new annotations.

Figure 7.1(a) shows the F-measure for different confidence thresholds. For

confidence thresholds smaller than one, the chart shows that the use of CAC

to discard annotations is beneficial by achieving a substantial improvement in

F-measure. The F-measure achieves its maximum value when the confidence

threshold is around 0.1. Figure 7.1(c) shows the precision and recall obtained

for different confidence thresholds. With a few exceptions, we have a steadily

increase in precision as we increase the confidence threshold.

Table 7.2 shows the accuracy of the predicted annotations when not using

CAC (CT = 0), and the accuracy of the subsets of annotations retained by

different confidence thresholds. Besides the precision, recall and F-measure,
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CT Filter Rate #correct #incorrect Precision Recall F-measure Misannotations
Discarded

0 0% 227 3058 6.9% 100% 12.9% 0%
0.001 47.5% 219 1506 12.7% 96.5% 22.4% 50.8%
0.01 72% 186 733 20.2% 81.9% 32.5% 76%
0.1 90% 92 235 28.1% 40.5% 33.2% 92.3%
1 98.7% 39 4 90.7% 17.2% 28.9% 99.9%

Table 7.2: Results obtained by filtering the 3285 annotations using different confidence
thresholds.

All Proteins
Filter Rate Precision Recall CT

0% 6.9% 100% 0
70% 19.3% 84.6% 0.008
80% 22.6% 67% 0.025
90% 27.3% 41% 0.094
95% 40.6% 29.5% 0.235

Set-1 Set-2 Set-3
Filter Rate Precision Recall CT Precision Recall CT Precision Recall CT

0% 7.5% 100% 0 7.4% 100% 0 5.8% 100% 0
70% 22.6% 90.6% 0.007 19.8% 81.5% 0.008 15.4% 82% 0.008
80% 27.3% 72.9% 0.028 23.3% 64.2% 0.028 18.4% 67.2% 0.018
90% 32.5% 47.1% 0.091 25.6% 38.3% 0.102 20.8% 36.1% 0.083
95% 40.6% 30.6% 0.263 40% 29.6% 0.243 30.4% 27.9% 0.162

Table 7.3: Results obtained by filtering the 3285 annotations using different filter rates.

the Table shows the number of correct and incorrect annotations that were

not discarded by CAC, and the percentage of misannotations discarded by

CAC from the original set. For example, by using CT = 0.001 CAC dis-

carded 50.8% (3058−1506
3058

) of the misannotations, maintaining 96.5% (219
227

) of

the correct annotations.

The confidence threshold has no biological meaning to curators. They

simply would like to discard a given amount of annotations to speedup the

curation process without loosing a significant part of valuable information.

This can be done by increasing CT until a defined filter rate is reached. The

filter rate means the percentage of annotations that are discarded by CAC

from the original set. For example, a filter rate of 90% means that only 10%

of the original annotations were retained. Figure 7.1(b) shows the F-measure

obtained by CAC for different filter rates. The chart shows that the use of

CAC to discard annotations is beneficial by achieving a steady improvement
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in F-measure as we increase the filter rate, except for filter rates larger than

99% (CT > 1). Table 7.3 shows the precision and the recall of the different

sets of annotations over different filter rates, together with the selected CT

in each set. The standard deviation of both recall and precision is always

smaller than 5% for the same filter rate, even with a standard deviation of

0.8% in precision in the original sets. The selected CT is almost the same in

all sets, except in the Set-3 where in some cases CT is about 1/3 smaller.

7.3 Discussion

The increase in precision is already a positive result to GOA curators, since

they primarily require high precision in an automated annotation system.

In this experiment, CAC increased precision at the cost of a low decrease

in recall. The trade-off between precision and recall is worth it, as it is

shown by the increase in the F-measure. This is always true except for

filter rates larger than 99% (CT > 1), because recall decreases and precision

is not improved. For such high confidence thresholds, there are still some

misannotations not discarded. For example, CAC assigned a high confidence

score to the annotation that assigns the GO term kinase activity to the

protein Sulfate transporter 1.2, but this annotation is not in GOA. However,

the GO term protein kinase activity is annotated to the same protein in GOA.

Since the term kinase activity is a generalisation of protein kinase activity,

the predicted annotation is correct but still not of interest to curators.

From 3058 misannotations, four remain with a confidence threshold of

one. These four annotations assign generic GO terms to proteins. These

annotations were considered incorrect, because they are not defined in GOA.

However, they are correct, but too generic to be of interest to curators. For
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large confidence thresholds many of these generic annotations remain. Thus,

by considering generic annotations as correct, the performance of CAC would

increase, but this would not reflect the curators’ interest for precise and

specific annotations. Nevertheless, it is undesirable to discard these generic

annotations, since the evidence substantiating them may be of interest to

curators.

The participant of BioCreAtIvE who achieved the largest precision pre-

dicted 41 annotations, 14 of which were correct. Using a confidence threshold

of 1, CAC selected 43 annotations, 39 of which were correct. On the other

hand, the participant who achieved the largest recall predicted 661 annota-

tions, 78 of which were correct. Using a confidence threshold of 0.1, CAC

selected 327 annotations, 92 of which were correct. Therefore, by proper

adjustment of the confidence threshold we can use CAC to outperform each

individual submission to BioCreAtIvE.

For a small decrease in recall, CAC was able to obtain a large improve-

ment in precision, since annotations that clearly do not satisfy the correlation

between structure and function are normally incorrect. Unfortunately, there

are exceptions. Using a confidence threshold of 0.001, CAC discarded 8 out

of 227 correct annotations. For these eight annotations, CAC could not find

similar annotations mainly because of the restriction that discarded curated

annotations to similar but distinct proteins. When CAC was tested without

this restriction, 47% of the misannotations were discarded maintaining all the

correct annotations, i.e., a two-fold increase in precision maintaining 100%

recall. This restriction was applied to ensure a fair evaluation of CAC. How-

ever, in a real application setting, this restriction would not be applied and

therefore obtain a higher performance. It is expected that, as the scientific
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CT Filter Rate #correct #incorrect Precision Recall F-measure Misannotations
Discarded

0 0% 259 3481 6.9% 100% 13% 0%
0.001 41.7% 251 1929 11.5% 96.9% 20.6% 44.6%
0.01 63.3% 218 1156 15.9% 84.2% 26.7% 66.8%
0.1 79.1% 124 658 15.9% 47.8% 23.8% 81.0%
1 86.7% 71 427 14.3% 27.4% 18.8% 87.7%

Table 7.4: Results obtained by filtering all the 3740 annotations using different confidence
thresholds.

community produces better classification schemes, CAC will also improve its

performance.

The results of the three different sets of annotations show that CAC is

not biased toward proteins with a large number of similar curated proteins.

In Figure 7.1, the results of these sets were uniform over all the confidence

thresholds. The small differences are due to different precision values of each

original set. The Set 1 of under-annotated proteins has the highest precision

(7.5%) and the Set 3 of over-annotated proteins has the lowest precision

(5.8%). The Set 1 achieves a precision of 100% for a recall larger than 20%,

because any correct annotation to under-annotated proteins is of interest

to curators, i.e., the problem of generic annotations described above is not

applicable to these proteins.

The results show that the performance obtained by a given filter rate is

preserved when applied to different sets of annotations. Therefore, curators

can expect to obtain similar performances in different sets of annotations

by using similar filter rates. Using different sets of curated and automated

annotations may imply different CT for obtaining the same filter rate. For

example, the automated annotations in Set-3 have more similar curated an-

notations than in the other sets, thus it is also expected to have larger con-

fidence scores. However, curators can easily adjust CT to obtain a required

filter rate.

CAC does not discard new knowledge, but it does not discard the misan-
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notations to under-annotated proteins either. To measure the real impact of

using CAC on the curation process it should take into account the 455 novel

annotations. CAC never discards these annotations, leaving the decision

to the curator by assigning an infinite confidence score to them. Table 7.4

shows that including these novel annotations has a small effect on the per-

formance of CAC. For example, by using a filter rate of 41.7% (CT = 0.001)

the curator only has to verify 58.3% (100%-41.7%) of the original annota-

tions only loosing 3.1% (100%-96.9%) of the correct annotations. However,

the precision for large filter rates is constrained by the precision of the novel

annotations. Since CAC does not discard any of the 455 novel annotations,

the precision converges to 7% (32 out of 455 annotations are correct) as CT

increases. Nevertheless, CAC can overcome this limitation and contribute

toward adding new knowledge. Nowadays, there are automated systems that

predict generic annotations with high precision. If these generic annotations

were considered, CAC would use them to score specific annotations, which is

what curators really want. CAC can also be used to crosscheck annotations

predicted by different automated systems. For example, CAC can score an-

notations predicted by a text-mining system based on annotations predicted

by sequence similarity.

7.4 Conclusions

A significant number of genes and proteins have been functionally charac-

terised by automatic tools, which have also produced a significant number of

misannotations. This Chapter proposed a novel approach that uses curated

annotations as domain knowledge for validating these automated annota-

tions. To demonstrate its feasibility and efficiency, I developed and evalu-
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ated CAC, a novel method to score automated annotations based on similar

curated annotations. The results show that CAC can effectively be used to

speed up the curation process by discarding a large amount of misannotations

without loosing a significant amount of correct annotations.

The precision/recall trade-off is tunable by a method’s confidence thresh-

old, which can be adjusted to obtain different filter rates according to the

curator’s requirements. The results obtained by similar filter rates were con-

sistent for different subsets of the annotations, so the performance of CAC

is predictable as we change a single tuning parameter.

CAC is an add-on data-mining tool that can be used by any automated

annotation system to improve the accuracy and to require less effort to cu-

rators. Since CAC uses extensive domain knowledge automatically collected

from public databases, it requires minimal human intervention. In addition,

CAC can score relationships between other objects than genes and biological

properties. All it requires is a similarity measure for each kind of object used

and a set of curated relationships.
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8
Conclusions

Different research communities produce different types of information whose

relevance and structure change over the time. Biological databases store a

large part of this information, but managing this wide, dynamic, and vast

amount of data is a complex issue. Thus, researchers continue to mainly

publish their findings in BioLiterature, which imposes fewer constraints to

express their ideas than structured databases. In addition, researchers receive

more credit for publishing their findings in BioLiterature than depositing

the facts into databases. However, identifying information in BioLiterature

is harder than in databases. Therefore, researchers are typically able to

keep up with only a small part of BioLiterature related to their work. Even

if authors submitted all the facts to databases, this would not solve the

problem. Researchers do not only look for the facts but also the evidence

substantiating them, since most facts are constrained to specific biological

settings.

Text-mining systems have been used to minimize the effort spent on au-

tomatically identifying the facts and the evidence texts in BioLiterature.

However, existing text-mining tools do not always provide what the curators

want. On the contrary, they spend a large amount of their time finding the

right documents. An annotation tool can only perform well when it is using

the correct documents and entities. Errors in the retrieval of documents or
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in the recognition of entities are propagated to the annotation process. This

explains why many curators are sometimes reluctant on using text-mining

tools in their work.

The performance of most state-of-the-art text-mining tools is still too

much dependent on domain knowledge provided by experts, which is time-

consuming and cannot be easily extended to other domains with different

user requirements. This dissertation presented a set of text-mining methods

that are effective and require minimal human intervention by integrating au-

tomatically acquired domain knowledge. In addition, a system for automatic

annotation of biological databases integrating these methods was success-

fully applied to several databases. These contributions provide substantial

evidence for validating the proposed hypothesis.

Hypothesis: In the automatic annotation of biological databases, the use

of domain knowledge automatically integrated from biological data re-

sources represents a feasible alternative to the use of domain knowledge

explicitly created by experts.

8.1 Research Contributions

To obtain a sound evidence for substantiating the hypothesis, I developed

ProFAL (bioProducts Functional Annotation through Literature), a system

for automatic annotation of biological databases that can integrate novel

methods based on the proposed approach. ProFAL was incorporated in the

curation process of the CAZy, APEG, and UniProt databases. The teams of

each database evaluated the tools by measuring the usefulness of the infor-

mation provided by ProFAL. They found the tools useful in revealing new

biologic annotations and providing a user-friendly interface for the curation
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process. ProFAL obtained the lowest performance in CAZy since it was

evaluated in a premature phase. However, this evaluation identified some

problems that after tackled increased the accuracy, reaching 93% of preci-

sion in UniProt. ProFAL met the expectations of the curation process by

reducing the workload of curators. The positive results were only possible

because ProFAL integrates a set of novel methods developed according to the

proposed hypothesis. These methods do not rely on manually inserted do-

main knowledge but on information automatically collected from biological

databases.

8.1.1 WeBTC

I developed WeBTC, a novel approach for text classification that involves au-

tomatic integration of extracted information from biological Web resources

with common statistical text classification methods. WeBTC was able to sig-

nificantly increase the precision (reaching 100%) of a standard classification

method.

WeBTC was evaluated in the BioText Task of KDD2002 Cup versus

state-of-the-art systems. The evaluation indicated that WeBTC provided

an effective alternative to enhance the performance of standard classification

methods.

8.1.2 FiGO

I developed FiGO, a novel unsupervised method for recognizing biological

terms in unstructured text involving the evidence content of their names.

FiGO computes the evidence content based on the nomenclature of a BioOn-

tology that structures the terms.
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FiGO was designed for recognizing terms and not for extracting annota-

tions. However, the method obtained a good performance in BioCreAtIvE

when compared with other submissions. The performance of FiGO demon-

strates that it provides an effective approach to recognise terms in BioLite-

rature, and to improve the performance of automatic annotation systems.

8.1.3 CAC

I developed CAC, a novel method to score biological annotations using the

correlation between structure and function. CAC was applied to a set of

annotations automatically extracted from BioLiterature. The results show

that CAC can effectively be used to discard incorrect annotations generated

by automatic systems.

The confidence threshold used by CAC can be manipulated to obtain

high precision, high F-measure, and an increase in precision maintaining an

acceptable recall. The results obtained by different thresholds were consis-

tent for different subsets of the annotations, so the performance of CAC is

predictable as we change a single tuning parameter.

8.2 Limitations

Despite its success, the approach proposed in this thesis has also its limi-

tations. It is only effective when there is a substantial amount of accurate

additional information available. In the experiments presented in this disser-

tation, the percentage of genes without available information was not signif-

icantly high. In the future, more genes will be characterised, especially for

model organisms, whose characterisation has a great fundamental economi-

cal and social impact. However, the percentage of uncurated genes will tend
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to grow, since the characterisation efforts are powerless to overcome the huge

amount of data being generated by high-throughput analysis tools.

The retrieval of relevant documents from BioLiterature can be extended

by using relevant keywords, such as names and alias of genes and proteins,

accession numbers, notes and EC numbers. The inclusion of these keywords

in queries to PubMed is expected to improve the retrieval of documents

related to each gene and therefore enrich the pool of significant/relevant

references.

Since PubMed only provides the abstracts of the documents, ProFAL

only extracted annotations reported on the abstracts. Therefore, ProFAL

is missing a large amount of information that is only reported on the full-

text documents. Curators normally need additional information that is not

present in the abstracts, such as the type of experiments applied and the

species from which proteins originate. Nowadays, many scientific publishers

are starting to provide open access to their documents. Thus, full-text doc-

uments will certainly be more accessible in the future, but their exploration

will originate new problems, such as the selection of the document’s sections

that report information of interest to the users (Shah et al., 2004).

FiGO generated mispredictions in the instances where all the words of a

GO term appeared in disparate locations of a sentence or in an unfortunate

order. Improvements can result from the incorporation of better syntactical

analysis into the identification of GO terms. For example, a reduction of

the window size of FiGO, for example using noun phrases instead of sen-

tences, can further increase precision. The handling of evidence text with

numbers and abbreviations should also be improved to avoid confusion with

the numbers and abbreviations used in the GO terms.

When FiGO identifies a term, it assumes that it represents an annotation.
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This is clearly a strong assumption because most of the times the term is

not related to the gene. Thus, there is a need for methods that can analyse

the context of where the term occurs to decide if there is an annotation or

not. These methods can be based on NLP techniques already applied in

other areas that analyse the syntax and semantics of text. Moreover, FiGO

only extracts GO terms. ProFAL will profit from extending FiGO to other

BioOntologies (e.g. KEGG, MeSH, EC numbers) that provide also important

sources of biochemical information.

8.3 Future Work

The vast prospects of strong fundamental economical and social impact stem-

ming from Bioinformatics lead to the creation of large research consortia

sponsored by both public and private efforts. These consortia run expensive

research projects that maintain and generate many of the available biological

data. Nevertheless, small institutions with limited resources are still impor-

tant to complement these large projects. They usually exploit the available

data to develop innovative approaches that could transform themselves into

important trends. For example, the management of well-founded and broad

BioOntologies is clearly an issue to be addressed by large research institutes,

but smaller institutions can make important contributions on the develop-

ment of useful tools to explore that information.

The work presented in this document constitutes a small and relatively

early contribution to the advance of Text Mining of BioLiterature. The

path I have chosen seems to be promising and the results encourage me

to carry on. I will continue to improve the performance of the proposed

methods and overcome the limitations mentioned in the previous Section.
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The improvements will also expand the functionality of ProFAL contributing

to a wider acceptance among curators of biological databases.

This research was only possible thanks to the research community efforts

in developing accurate and valuable data resources and by making them

available. These data resources are continually being updated with more

information, enhancing the tools proposed by this thesis. The data resource

most used by this thesis is GO, whose quality enabled the successful appli-

cations of the proposed approach. In my opinion, BioOntologies will have

an important role, given the lack of a standard nomenclature in Molecular

Biology. For example, they may support the integration of a wide variety of

data sources, such as clinical and post-genomic data, providing new insights

into how living systems operate.

This thesis also attracted my attention to other topics of Bioinforma-

tics, where many problems remain unresolved. Despite rapid explosion of

knowledge in the life sciences, its fully digitalisation, storage and curation

are nowhere close to being completed. It is hard to ignore that Bioinforma-

tics enabled increased scientific progress in Molecular Biology. Nevertheless,

Bioinformatics is still a venture into an uncertain world that holds a great

potential to benefit human health and society. For example, recent efforts

to combine and coordinate diverse elements of Molecular Biology for un-

derstanding living systems as a whole are promising (Ideker et al., 2001).

Many relevant biological discoveries in the future will certainly result from

an efficient exploitation of the existing and newly generated data. This will

require innovative and efficient data-management approaches, which I intend

to develop based on the knowledge and skills that I acquired through this

thesis.
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A
ProFAL Class Diagram

ProFAL can be easily integrated with different biological databases. When

these databases are implemented on relational database management sys-

tems, the integration involves little more than developing SQL queries to

get data from the biological database and convert that data according to

ProFAL’s class diagram.

The ProFAL’s class diagram models the data used by the retrieval and

extraction use-cases, which were presented in Chapter 4. The other use-cases

only use the data generated by these two use-cases. This Appendix describes

the class diagram in two sections, one for each use-case.

A.1 Retrieval

Figure A.1 presents the UML class diagram of data involved in the Retrieval

use-case (Booch et al., 1998). The Author, DocAuthor, Document and Gene

classes represent information about the genes and documents automatically

collected.

The Citation class represents the relationship between documents and

genes. The type attribute indicates that the relationship was predicted or,

alternatively, that it was manually assigned. The value attribute represents
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Figure A.1: Class diagram of the Retrieval use-case.

the confidence in each relation, and the valueType attribute specifies if this

confidence was automatically or manually assigned.

The External and ExtCitation classes represent citations that were auto-

matically collected from external sources. These identify the entries in the

external sources linked to a given gene and associate them with the docu-

ments cited in their linked entries.

A.2 Extraction

Figure A.2 presents the UML class diagram of data involved in the Extrac-

tion use-case. The Annotation class represents the relation between genes
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Figure A.2: Class diagram of the Extraction use-case.

and terms from the BioOntology. The value attribute represents the con-

fidence score in each relation, and the valueType attribute specifies if this

confidence was automatically or manually assigned. The Extraction process

identifies occurrences of these terms in the sentences of each document. This

information is regarded as evidence text and is represented by the Occurrence

and Sentence classes.

In Figure A.2, the value attribute in the Annotation class represents the

score assigned by the Validation use-case, which can be modified by the

Verification use-case.
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B
Semantic Similarity

Measures

Most research on acquiring semantic properties of concepts has focused on

semantic similarity, a research field that aims at calculating how similar two

concepts are based on their semantic properties, normally acquired from cor-

pora (Manning and Schütze, 1999). Research on Information Theory devel-

oped many semantic similarity measures. Some of them calculate maximum

likelihood estimates for each concept using the corpora, and then calculate

the similarity between probability distributions. Rada et al. (1989) empha-

sised the use of semantic similarity in ontologies by combining the struc-

ture and content of an ontology with statistical information from corpora.

This Appendix presents state-of-the-art semantic similarity measures follow-

ing this approach, including a measure developed on purpose for achieving

a better performance in GO. The last section of this Appendix describes a

tool that uses all the described measures in GO.

B.1 Basic Concepts

Semantic similarity measures can be used to calculate the similarity of two

concepts organised in an ontology. The ontology structure defines the func-

tion Parents(c) that, given a concept c, returns the set of more generic
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concepts directly linked to c. In the case of an ontology organised as a tree,

Parents(c) always returns a single concept. On the other hand, in GO,

Parents(c) can return more than one term (concept), because each aspect

of GO is composed by a set of terms organised as a DAG. Using the function

Parents(c) the set of paths between two concepts ca and cb can be defined

as:

Paths(ca, cb) = (B.1)

{≺ c1, . . . , cn � |(ca = c1) ∧ (cb = cn) ∧

(∀i : (1 ≤ i < n) ∧ (ci ∈ Parents(ci+1)))}.

A concept a is an ancestor of a concept c when there is at least one path

from a to c:

Ancestors(c) = {a | Paths(a, c) 6= ∅}. (B.2)

Note that since ≺ c �∈ Paths(c, c), we have c ∈ Ancestors(c).

The information content of a concept is inversely proportional to its fre-

quency in a corpus. The frequency of a concept c, Freq(c), can be defined

as the number of times that c and all its descendants occur:

Freq(c) =
∑
{occur(ci) | c ∈ Ancestors(ci)}. (B.3)

Note that, for each ancestor a of a concept c, we have Freq(a) ≥ Freq(c),

because the set of descendants of a contains all the descendants of c. An esti-

mate for the occurrence of each GO term is the number of proteins annotated

with it.
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An estimate for the likelihood of observing an instance of a concept c is:

Prob(c) =
Freq(c)

maxFreq
, (B.4)

where maxFreq is the maximum frequency of all concepts. The maxFreq of

each aspect of GO is always equal to the frequency of the maximum (root)

term in the DAG. For example, the GO term t =molecular function has

Prob(t) = 1, because all the GO terms in the molecular function aspect are

descendant of t, and therefore Freq(t) = maxFreq.

The information content of a concept c can be defined as the negative

logarithm of its probability:

IC(c) = − log(Prob(c)). (B.5)

Note that the information content is monotonic, since it is non-increasing as

we descend in the hierarchy.

Semantic similarity measures assume that the similarity between two con-

cepts is related to the extent to which they share information. The common

ancestors of two concepts c1 and c2 are:

CommonAnc(c1, c2) = (B.6)

Ancestors(c1) ∩ Ancestors(c2).

Given two concepts c1 and c2, their shared information, Share(c1, c2), can

be defined as the information content of their most informative common

ancestor:

Share(c1, c2) = (B.7)
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max{IC(a) | a ∈ CommonAnc(c1, c2)}.

The most informative common ancestor is the one with the largest informa-

tion content. Note that Share(c, c) = IC(c), because c ∈ Ancestors(c).

B.2 State-of-the-art Measures

Many semantic similarity measures applied to ontologies have been proposed.

Resnik (1995) defined a semantic similarity measure based on the informa-

tion content of the most informative common ancestor. The information

content of a concept is inversely proportional to its frequency in the corpora.

Concepts that are frequent in the corpora have low information content. For

example, the stop words (such as the) that occur almost everywhere in the

text normally provide little semantic information. Jiang and Conrath (1997)

proposed a semantic distance measure based on the difference between the

information content of the concepts and the information content of their

most informative common ancestor. Lin (1998) proposed a semantic similar-

ity measure based on the ratio between the information content of the most

informative common ancestor and the information content of both concepts.

The rest of this section details these three measures.

Given two concepts c1 and c2, Resnik defined their semantic similarity as

the information content of their most informative common ancestor:

SimResnik(c1, c2) = Share(c1, c2). (B.8)

Given two concepts c1 and c2, Jiang&Conrath defined their semantic dis-

tance as the difference between their information content and the information

130



content of their most informative common ancestor:

distJC(c1, c2) = (B.9)

IC(c1) + IC(c2)− 2× Share(c1, c2).

Note that Jiang&Conrath’s formula measures a distance, the inverse of sim-

ilarity. A similarity measure based on Jiang&Conrath distance measure can

be defined as:

SimJC(c1, c2) =
1

distJC(c1, c2) + 1
. (B.10)

distJC + 1 is used to avoid infinity values, since distJC(c, c) = 0.

Given two concepts, c1 and c2, Lin defined their similarity as the infor-

mation content of their most informative common ancestor over their infor-

mation content:

SimLin(c1, c2) =
2× Share(c1, c2)

IC(c1) + IC(c2)
. (B.11)

B.3 GraSM

GO is not organised as a tree-like hierarchy, but as directed acyclic graphs

(DAG), one for each aspect. This enables a more complete and realistic anno-

tation. The semantic similarity measures described above only use the most

informative common ancestor of both concepts. Therefore, when applied to

a DAG, these measures discard other common ancestors even if they are

disjunctive ancestors. When all but the most informative common ancestor

nodes are ignored, different possible interpretations of the biologic concepts

are disregarded. To tackle this limitation, I developed GraSM (Graph-based

Similarity Measure), a novel method for incorporating the semantic rich-

ness of a graph by selecting disjunctive common ancestors of two concepts.
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GraSM selects and uses all the disjunctive common ancestors representing

all interpretations.

GraSM assumes that two common ancestors are disjunctive if there are

independent paths from both ancestors to the concept. Independent paths

mean those that use at least one concept of the ontology not used by the other

paths. Two disjunctive ancestors of a concept represent two distinct inter-

pretations of a concept. For example, in Figure 2.8 the terms carbohydrate

binding and bacterial binding are two disjunctive ancestors of peptidoglycan

binding. Thus, the similarity between peptidoglycan binding and polysaccha-

ride binding is smaller than if peptidoglycan binding only had the ancestor

carbohydrate binding. The similarity is smaller because peptidoglycan bind-

ing can also be interpreted as bacterial binding, which is not an ancestor of

polysaccharide binding.

Calculating the similarity between two concepts using just the most infor-

mative common ancestor only accounts for one of the interpretations. How-

ever, similarity measures should also account for other interpretations of

both concepts. GraSM selects all the common disjunctive ancestors of two

concepts in a DAG to calculate their similarity.

GraSM considers that a1 and a2 represent disjunctive ancestors of c if

there is a path from a1 to c not passing through a2 and a path from a2 to c

not passing through a1:

DisjAnc(c) = (B.12)

{(a1, a2) |

(∃p : (p ∈ Paths(a1, c)) ∧ (a2 /∈ p)) ∧

(∃p : (p ∈ Paths(a2, c)) ∧ (a1 /∈ p))}
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Note that if a1 /∈ Ancestors(a2) and a2 /∈ Ancestors(a1) then a1 and a2 are

disjunctive ancestors of c. For example, in Figure 2.8 (t2, t3) ∈ DisjAnc(t5).

Otherwise, if a1 ∈ Ancestor(a2) it is still possible that a1 and a2 represent

disjunctive ancestors of c. For example, in Figure 2.8 (t1, t2) ∈ DisjAnc(t5)

because the path ≺ t1, t3, t5 � does not pass through t2, and the path ≺

t2, t5 � does not pass through t1.

Given two concepts c1 and c2, their common disjunctive ancestors are the

most informative common ancestor of disjunctive ancestors of c1 and c2, i.e.,

a1 is a common disjunctive ancestor of c1 and c2 if for each ancestor a2 more

informative than a1, a1 and a2 are a disjunctive ancestor of c1 or c2:

CommonDisjAnc(c1, c2) = (B.13)

{a1 | a1 ∈ CommonAnc(c1, c2) ∧

∀a2 : [(a2 ∈ CommonAnc(c1, c2)) ∧

(IC(a1) ≤ IC(a2)) ∧ (a1 6= a2)] ⇒

[(a1, a2) ∈ (DisjAnc(c1) ∪DisjAnc(c2))]}

Note that CommonDisjAnc(c, c) = {c} because all the ancestors of c are not

disjunctive ancestors of c, i.e., (c, a) /∈ DisjAnc(c) for all a ∈ Ancestors(c).

In Figure 2.8, CommonDisjAnc(t4, t5) = {t1, t2} because t2 is the most

informative common ancestor, and t1 and t2 are disjunctive ancestors of t5.

GraSM defines the shared information between c1 and c2 as the average

of the information content of their common disjunctive ancestors:

ShareGraSM(c1, c2) = (B.14)

{IC(a) | a ∈ CommonDisjAnc(c1, c2)}.
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GO term Annotations Freq Prob IC
t0 8 16 1 0
t1 3 8 0.5 1
t2 2 4 0.25 2
t3 1 2 0.125 3
t4 1 1 0.0625 4
t5 1 1 0.0625 4

Table B.1: The information content of each term considering a certain number of annota-
tions

Share can be replaced by ShareGraSM yielding three new variants of the

semantic similarity measures presented in the previous Section: SimResnikGraSM ,

SimJCGraSM and SimLinGraSM .

Example

Considering only the sub graph of GO represented in Figure 2.8 and the

values in Table B.1, the set of common ancestors of t4 and t5 in a de-

scendant order of IC is {t2, t1, t0}, and the set of common disjunctive an-

cestors is CommonDisjAnc(t4, t5) = {t2, t1}, as described above. Thus,

ShareGraSM(t4, t5) = {IC(t2), IC(t1)} = 1.5. The similarity between t4 and

t5 with and without using GraSM is:

SimResnik(t4, t5)

= Share(t4, t5) = 2

SimResnikGraSM(t4, t5)

= ShareGraSM(t4, t5) = 1.5

134



SimJC(t4, t5)

=
1

IC(t4) + IC(t5)− 2× Share(t4, t5)

=
1

4 + 4− 2× 2
= 0.25

SimJCGraSM(t4, t5)

=
1

IC(t4) + IC(t5)− 2× ShareGraSM(t4, t5)

=
1

4 + 4− 2× 1.5
= 0.2

SimLin(t4, t5)

=
2× Share(t4, t5)

IC(t4) + IC(t5)

=
2× 2

4 + 4
= 0.5

SimLinGraSM(t4, t5) =

=
2× ShareGraSM(t4, t5)

IC(t4) + IC(t5)

=
2× 1.5

4 + 4
= 0.375

If the shared information of one ancestor is high, and then we find an-

other disjunctive common ancestor with lower information content, it seems

that finding the additional relationship should increase the similarity rather

than lessen it. However, this is an incorrect intuition. Finding a disjunctive
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Algorithm 2: ShareGraSM (c1, c2)

1: Anc = CommonAnc(c1, c2)
2: CommonDisjAnc = {}
3: for all a ∈ sortDescByIC(Anc) do
4: isDisj = true
5: for all cda ∈ CommonDisjAnc do
6: isDisj = isDisj ∧

(DisjAnc(c1, (cda, a)) ∨DisjAnc(c2, (cda, a)))
7: end for
8: if isDisj then
9: addTo(CommonDisjAnc, a)

10: end if
11: end for
12: shared = 0
13: for all cda ∈ CommonDisjAnc do
14: shared += IC(cda)
15: end for
16: return shared/sizeof(CommonDisjAnc)

Algorithm 3: DisjAnc(c, (a1, a2))

Input: IC(a1) ≤ IC(a2)
1: nPaths = #Paths(a1, a2)
2: nPaths1 = #Paths(a1, c)
3: nPaths2 = #Paths(a2, c)
4: return nPaths1 ≥ nPaths× nPaths2

common ancestor means that at least one of the terms has a distinct and

more distant interpretation to the other term, which makes the terms less

similar. Thus, by taking in account the less informative common ancestor,

GraSM provides lower similarities than the original measures.

B.3.1 Computational Aspect

Algorithm 2 describes a possible implementation of ShareGraSM . It starts

by selecting the common ancestors of both concepts (line 1) and by initial-
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ising the list of common disjunctive ancestors as an empty list (line 2). The

algorithm selects each common ancestor in descending order of information

content (line 3). For each selected ancestor, the algorithm checks if the an-

cestor is disjunctive to all the common disjunctive ancestors already selected

(lines 4 to 7). If the ancestor is disjunctive, it adds it to the list of common

disjunctive ancestors (line 9). At the end, the algorithm calculates the aver-

age of the information content of all the ancestors in the common disjunctive

ancestors list (lines 12 to 16).

Algorithm 3 describes an efficient technique to check if a pair of ancestors

(a1, a2) are disjunctive ancestors of a given concept c. Since IC(a1) ≤ IC(a2),

then there are no paths from a2 to a1. Thus, from Definition B.13, we can

conclude that a1 and a2 are disjunctive if and only if there is at least one

more path from a1 to c than from a1 to c passing through a2. Thus, the

algorithm only checks if the number of paths from a1 to c is larger than the

sum of the number of paths from a1 to a2 and from a2 to c.

These implementations show that using GraSM is not prohibitively ex-

pensive. In addition to finding the common ancestors, as Share, ShareGraSM

only has to check the list of common ancestors, which is normally smaller

than the depth of the graph. Counting the number of paths is also not time-

consuming. For example, in the GO distribution there is a table that stores

each path between two GO terms.

The evaluations of FiGO, CAC and GOAnnotator, presented in this doc-

ument, did not use GraSM to calculate the semantic similarity between GO

terms because GraSM was not properly defined and evaluated at the time

they were performed.

137



B.4 FuSSiMeG

All the semantic similarity measures described in this Appendix were im-

plemented by FuSSiMeG (Functional Semantic Similarity Measure between

Gene-Products), which measures the functional similarity between proteins

based on the semantic similarity of the GO terms annotated to them (Couto

et al., 2003c). FuSSiMeG is available on the Web1, affording the similarity

calculation on the fly.

Figure B.1 presents the results displayed by the tool for two UniProt

proteins using the SimLinGraSM measure. The tool displays the semantic

similarity between the GO terms annotated to the proteins. Besides the

similarity of the annotated GO terms, their specificity cannot be disregarded

when comparing two proteins. For example, both proteins can be annotated

with a generic GO term (100% similarity), but this does not mean that

they are similar since many other proteins are also annotated to this term.

Therefore, FuSSiMeG also displays the weighted similarity between the GO

terms, which divides the semantic similarity by the information content of

both terms.

FuSSiMeG has been used for distinct tasks:

• The USA national institutes of health and aging used FuSSiMeG to

validate the extraction of networks of probes/genes that are coregu-

lated in large-scale expression studies for helping building and testing

hypotheses about neurodegeneration.

• The Samuel Lunenfeld Research Institute used FuSSiMeG to work on

gene function analysis for whole mouse genome.

• The MPI for Molecular Genetics in Berlin is using FuSSiMeG to work

1http://xldb.fc.ul.pt/rebil/tools/ssm/
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Figure B.1: Functional semantic similarity of P42973 and O85465 UniProt proteins.
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on a multi genome annotation tool, which provides potential new GO

annotations via sequence similarities.

• The Facultad de Farmacia of the University of San Pablo - CEU in

Madrid is using FuSSiMeG to compare different similarity measures.

• The Universiti Teknologi Malaysia is using FuSSiMeG to work on ap-

plying GO for protein function prediction.

• The Iowa State University is using FuSSiMeG to carry out a clustering

process using GO information.
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